CIRSSE-

N93-21306

COMMAND GENERATOR

TRACKER BASED DIRECT MQODEL

(NASA-CR-192756)

R- 124

NASA-CR-192756 R
NAGW- ,333"‘—\

rr¥ T o ¥ T oFoT
. * % . 7 2
s - < Bt &3 R e 8 i

_'(({fz

<
4] T2
5 ~
— [l
1% w0
[~ ~
- Q
~
O
~
)
(L)

Center for Intelligent
Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

i i N I S a
I S T AT R T;)

ENGINZENING g1 PHYSICAD
SCIENCES Linsagny

SEP 10 1892

Uiy pe MORYLAR
COLLIGE Fow WARY) AN,

(Rensselaer Polytechnic Inst.)

REFERENCE ADAPTIVE CONTROL OF A
211 p

PUMA 560 MANIPULATOR Thesis

COMMAND GENERATOR

TRACKER BASED DIRECT
L MODEL REFERENCE ADAPTIVE
— CONTROL OF A PUMA 560 MANIPULATOR

by

David C. Swift

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering Department
Troy, New York 12180-3590

August 1992

il

CIRSSE REPORT #124

I/

© Copyright 1992
by
David C. Swift
All Rights Reserved

il

CONTENTS

LISTOF TABLES e e, vii
LIST OF FIGURES e, X
ACKNOWLEDGMENT oottt xvi
ABSTRACT e e e xvii
1. Introduction e e e e 1
1.1 Motivation for Using Direct Model Reference Adaptive Control 1
1.2 LiteratureReview 2
1.3 Goalof ThisProject 4
1.4 Summary of Topicsin Thesis 4
2. Development of the DMRAC Control Law 6
21 Goal e e 6
2.2 Command Generator Tracker Development 7
2.3 Basic Direct Model Reference Adaﬁtive Algorithm 11
2.4 Modification of Basic DMRAC for Non-ASPR Plants 14
2.5 Modification to Insure Asymptotic Model Following 16
2.6 Addition of Plant Output Derivative Term 18
2.7 Addition of a Bias Term to Provide Adaptive Excitation Throughout
Range of Interest e e e e e e e e e e e 19
2.8 Discretization of DMRAC Control Law for Implementation 21
2.8.1 Reference Model Dynamics. 22
2.8.2 Feed-Forward Dynamics 23
2.8.3 Integral Adaptation Dynamics 24
29 Summary e e e 25
3. Simulation Environment 26
3.1 Simulation Administrator 27
3.2 Joint Control Algorithm 29
3.2.1 Reference Model . . . e e e e e e e e e e e e e e e 29

il

329 Feed-Forward Filter.« v v v oo o 30

323 BiasTerm . v v v v v v it e e et e e e e 30

3.3 PUMA 560 Manipulator Dynamic Model 31
3.3.1 Coordinate Frame Assignments 31
3.3.2 Derivation of Dynamic Equations 32
3.3.3 End-Effector Parameters 35
3.3.4 Verificationof Model Lo oo oL 36
3.3.5 Robot Model Implementation 37

3.4 Integration Routine 37
3.5 Trajectory Genmerator oot c i 38
3.6 SUMMATY . o v« v v v v v i et e e e e e e e e 42
4. Simulation Results (Tuning and Joint Evaluation Cases) 43
41 Tuning . . . o v e e 43
4.1.1 Tuning Parameters on 43
4.1.2 Tuning Process 45
4.1.3 DMRAC Tuning for a PUMA 560 Manipulator 46

4.2 Individual Joint Evaluations 47
4.2.1 Joint One Evaluationo v o 52
422 Joint Two Evaluation 55
4.2.3 Joint Three Evaluation 61
4.2.4 Joint Four Evaluation 66
4.2.5 Joint FiveEvaluation, 69
4.2.6 Joint Six Evaluation R 73

4.3 SUMMATY . .« vt vt ettt e et e e e 75
. Simulation Results (Trajectory Tracking Cases and Parameter Effects) . . 77
5.1 Tracking of 6 Joint Trajectories 77
5.1.1 Tracking Trajectory #1 oo 77

5.1.2 Tracking Trajectory #2 80

5.1.3 Tracking Trajectory #3« 82

5.2 Effects of DMRAC Parameter Changes 83
5.2.1 Base Case for Comparison« .« .« v oo oot v 86

5.2.2 Adaptive Weighting Matrices, Tpro and Tine - - - - - - 8T

v

5.2.3 Reference Model, w, e e e e e e e e e e e e 92

5.2.4 Feed-Forward Filter, Kyandr. 93
5.2.5 Plant Output Derivative Weights, o 94

- 5.2.6 Removal of Model Feed-Forward Filter 97
5.2.7 Removal of Model and Plant Feed-Forward Filter 99

853 Summary e e e 99
6. Simulation Results (Load Cases) 101
6.1 Adaptation to “Static” Payload Variation 101
6.1.1 TrajectoryOme 101
6.1.2 Trajectory Two 103
6.1.3 Summary e e .. 111

6.2 Adaptation to “Dynamic” Payload Variation 111
621 FirstCase i e e 112
622 SecondCase..............iiiiiieuneneo.. 116
623 ThirdCase 121
6.2.4 Summary e 122

7. Simulation Results (Reducing Trajectory Tracking Error) 128
7.1 Tracking Errors S 128
7.2 Predictive Compensatoro uuenenonn. 129
7.3 Predictive Compensation Simulation Results 131
7.4 Increasing Reference Model Speed e e e 133
7.5 SUMMATY . . . v vttt e e e et e e e e e e e 134
8. CIRSSE Testbed Environment TR 135
8.1 CIRSSE Testbed Hardware . . . « . o v o o oo oe e e 136
8.1.1 Puma Manipulators. e e e e e e e e e e 136

8.1.2 Unimate Controller 136

8.1.3 CIRSSE Computing Network 138

8.1.4 Motion Control System Cage 139

82 Software 139
821 Overview 0 0., e 140
822 Multi-Tasking Unix and ViWorks 141

8.2.3 CIRSSE Testbed Operating System - . « - - 142

8.2.4 Motion Control System 144

8.2.5 Synchronization and Data Exchange for Joint Control 146

8.2.6 Additional Software.o 147

8.2.7 Task Distribution o oo e 148

8.3 Hardware Implementation Issues., 149
8.3.1 Deriving Velocity Information from Position Data 150

- 8.3.2 DMRAC Computation Complexity 151

8.4 SUMMATY .« . v v v it et e et e et 151

9. Experimental Results v 153
9.1 Three Joint Trajectory Tracking« . . oo oo vt 153
9.1.1 First Trajectory o v v v v v vt v v e 153

9.1.2 Second Tta.jectpry 154

9.2 StaticLoad Changes 158
9.3 Dynamic Load Changes 165
9.4 OtherTestbed Runs 166
9.4.1 Stiction Effects on Steady State Model Following Error 170

9.4.2 Disturbance Rejection 170

05 SUMMATY . v ¢ v v v v v e et e o e et e e e e e e e e 175
10. Conclusions and Future Research 176
10.1 Summary and Conclusions« ... oo 176
10.2 Future Research oo 181
LITERATURE CITED et e e e e 182
APPENDICES e e e e e e e e 185
A. Dynamic Equations of a PUMA 560 Manipulator 185

vi

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 4.15
Table 4.16
Table 4.17
Table 4.18
Table 5.1

LIST OF TABLES

Maximum Joint Torques for PUMA 560 Manipulator . . .
Masses and Centers of Gravity of Puma Arm Links
Diagonal Inertia Terms and Reflected Motor Inertias . . .
End-Effector Parameters
Tunable Parameters for (BASIC/FF?/a/bias/disc) . . .
Final Parameter Values. e e e e e e e e
Peak Errors for Final Tuning Values
Parameter Values for Joint Evaluation Runs
Joint 1 Evaluation Trajectory (Maximum Innertia)

Joint 1 Evaluation Trajectory (Minimum Innertia).

Joint 2 Evaluation Trajectory (Maximum Gravity Load)

Joint 2 Evaluation Trajectory (Minimum Gravity Load)

Joint 2 Evaluation Trajectory (Coupling Effect)

Joint 3 Evaluation Trajectory (Maximum Gravity Load)

Joint 3 Evaluation Trajectory (Minimum Gravity Load)
Joint 3 Evaluation Trajectory (Coupling)

Joint 4 Evaluation Trajectory (Maximum Inertia)

Joint 4 Evaluation Trajectgry (mernum Inertia)
Joint 5 Evaluation Trajectory (Minimum Gravity Loading) . .
Joint 5 Evaluation Trajectory (Maximum Gravity Loading) . .
Joint 6 Evaluation Trajectory
Joint Evaluations Summary, Simulation.

Parameter Values for 6 Joint Trajectory Tracking Runs

vii

49

Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 8.1
Table 8.2

Table 8.3
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5

First Six Joint Tracking Test Trajectory

Peak Errors for First Trajectory 78
Second Six Joint Tracking Test Trajectory 80
Peak Errors for Second Trajectory 82
Third Six Joint Tracking Test Trajectory 82
Base Parameter Values for Parameter Change Runs 86
Effects of Weighting Matrices on Adaptive Gains 88
Parameter Values for StaticRuns 102
Link Masses e 102
First Static Load Trajectory 102
First Static Load Trajectory Error Summary 103
Second Static Load Trajectory 107
First Static Load Trajectory Error Summary 108
Parameter Values for Dynamic Load Change Runs 112
Peak Errors for First Dynamic Load Change, 5kg Case 112
Second Dynamic Load Trajectory 117
Third Dynamic Load Trajectory 122
PUMA 560 Joint Ranges 137
Distribution of Libraries and Tasks Amongst the MCS Pro-

CESSOTS . & v v e v v v e e e m et e b e e e e e e e e e 149
Distribution of Tasks on Sun4 Chassis 150
Parameter Values for 3 Joint Trajectory Tracking Runs 154
First Three Joint Tracking Test Trajectory 154
First Trajectory Peak Tracking Errors 157
Second Three Joint Tracking Test Trajectory 158
Second Trajectory Peak Tracking Errors 158

viil

Table 9.6
Table 9.7
Table 9.8
Table 9.9
Table 9.10

Static Load Change Trajectory 162

Dynamic Load Change Trajectory 166
Joint 2 Peak Errors for Dynamic Load Case 166
Joint 3 Peak Errors for Dynamic Load Case 168
Times of Disturbance Application 172

ix

Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5

Figure 2.6
Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2

Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

LIST OF FIGURES

Non-Adaptive Command Generator Tracker Block Diagram . 11

Basic Direct Model Reference Adaptive Controller Block Di-

BETAM o« v v v v v v e e e e e e e e e e e e e e e e 13
DMRAC with Augmented Plant Block Diagram 15
DMRAC with Supplementary Feed-Forward in Plant and Model
Block Diagramttt 17
DMRAC with Added Plant Output Derivative Term Block
Diagram e 19
Addition of Bias Term to DMRAC Algorithm 21
Rearranged DMRAC Algorithm Block Diagram 24
Simulation Administrator, 27
Stable Equalibrium for the PUMA 560 31
PUMA 560 Coordinate Frame Assignments. 33
Shutdown Position, {0, —45, 180,6, 45,90} degrees 39
An Example Minimum Jetk Path 41
PUMA 560 in Stable Equilibrium 48

Step response using Initial Tuning Parameter Values (Joints
L2,3) . o e e e e e 48

Step response using Initial Tuning Parameter Values (Joints
4,5,6) e e e 49

Response using Final Tuning Parameter Values (Joints 1,2,3) . 50
Response using Final Tuning Parameter Values (Joints 4,5,6) . 50
Step Response of Reference Model with w, = 5.0 and { = 1.0 51
Trajectory Used to Evaluate Joint 1. 33

Joint 1 Evaluation, Maximum Inertia 54

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28
Figure 4.29
Figure 4.30
Figure 4.31
Figure 3.1

Figure 5.2

Figure 5.3

Joint 1 Evaluation, Minimum Inertia

Trajectory Used to Evaluate Joint 2, Maximum Gravity Loading 57
Joint 2 Evaluation, Maximum Gravity Loading 57
Trajectory Used to Evaluate Joint 2, Minimum Gravity Loading 58
Joint 2 Evaluation, Minimum Gravity Loading 59
Trajectory Used to Evaluate Joint 2, Coupling Effect 60
Joint 2 Evaluation, Coupling Effect 61
Trajectory Used to Evaluate Joint 3, Maximum Gravity Loading 62
Joint 3 Evaluation, Maximum Gravity Loading 63
Trajectory Used to Evaluate Joint 3, Minimum Gravity Loading 64
Joint 3 Evaluation, Minimum Gravity Loading 65
Trajectory Used to Evaluate Joint 3, Coupling Effect 65
Joint 3 Evaluation, Coupling 66
Trajectory Used to Evaluate Joint 4, Maximum Inertia 67
Joint 4 Evaluation, Maximum Inertia 68
Trajectory Used to Evaluate Joint 4, Minimum Inertia 69
Joint 4 Evaluation, Minimum Inertia. 0

Trajectory Used to Evaluate Joint 5, Minimum Gravity Loading 71

Joint 5 Evaluation, Minimum Gravity Loading 71
Trajectory Used to Evaluate Joint 5, Maximum Gravity Loading 72
Joint 5 Evaluation, Maximum Gravity Loading 73
Trajectory Used to Evaluate Joint 6 T4
Joint 6 Evaluation 75
First Six Joint Tracking Test Trajectory 79
Model Following Errors for First Trajectory 79

....... 80

Torque Signals for Joints 1-4 for First Trajectory

xi

Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 6.1

Figure 6.2

Figure 6.3

Second Six Joint Tracking Test Trajectory

Model Following Errors for Second Trajectory 81
Third Six Joint Tracking Tést Trajectory 83
Actual and Desired (ym) Joints 1-3 Positions for Third Case . 84
Actual and Desired (ym) Joints 4-6 Positions for Third Case 84
Model Following Error for Joints 1-3 for Third Case 85
Model Following Error for Joints 4-6 with Joint 6 Torque for

Third Case v v v v ittt ettt e e e 85
Base Case for Parameter Change Comparisons 87
Effects of Tprp2zzyon Joint 2 o oo v oo 89
Effects of Tins2zyon Joint 2o oo oo 89
Effects of Tpro(e,9) and Tproproagyon Joint 2 . . . o o oo o0 90
Effects of Tinso,0) and Tinsr0g0y0n Joint 2 . . . o o oo oo 91
Effects of Tprp029pon Joint 2 oo v oo 92
Effects of Tingzoz0pon Joint 2 oL 93
Effectsof wp, on Joint 3 94
Effects of K, in feed-forwardon Joint 2. 95
Effects of r in feed-forwardon Joint 2. 95
Effects of derivative weightingaon Joint 2. 96
Effects of a zero « weighton Joint 2 97
Wrist Joint Torques for Instability 98
Removal of Wrist Instability by Lowering o Weights 98
Joint 2 error with no Feed Forward 99
First Static Load Trajectory« oo 103
Joint 1 Error Plots for First Trajectory (Al Loads) 104
Joint 2 Error Plots for First Trajectory (Al Loads) 104

xii

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22
| Figure 6.23
F igure 6.24
Figure 6.25
Figure 6.26
Figure 6.27
Figure 6.28
Figure 6.29

Joint 3 Error Plots for First Trajectory (All Loads) 105
Joint 4 Error Plots for First Trajectory (All Loads) 105
Joint 5 Error Plots for First Trajectory (All Loads) 106
Joint 6 Error Plots for First Trajectory (All Loads) 106
Second Static Load Trajectory 107
Joint 1 Error Plots for Second Trajectory (All Loads) 108
Joint 2 Error Plots for Second Trajectory (All Loads) 109
Joint 3 Error Plots for Second Trajectory (All Loads) 109
Joint 4 Error Plots for Second Trajectory (All Loads) 110
Joint 5 Error Plots for Second Trajectory (All Loads) 110
Joint 6 Error Plots for Second Trajectory (All Loads) 111

Joint 1 Error Plots for Addition of Load at Shutdown Position 113
Joint 2 Error Plots for Addition of Load at Shutdown Position 113
Joint 3 Error Plots for Addition of Load at Shutdown Position 114
Joint 4 Error Plots for Addition of Load at Shutdown Position 114
Joint 5 Error Plots for Addition of Load at Shutdown Position 115

Joint 6 Error Plots for Agaiiion of Load at Shutdown Position 115

Jomts 1,2, and 3 Torque signals for . Dynamlc Case One S5kg . 116
Tra._;ectory Used for Seco;TDvn;.mm Load Change e 117
Joint 1 Error Plots for :Secqnd:Dypa.mxc Load Case 118
Jonnt 2 Error Plots for Seeond Dynarmc Load Case 118
Jomt 3 Error Plots for Second Dyhamlc Load Case 119
Joint 4 Error Plots for Second Dynamic Load Case 119
Joint 5 Error Plots for Second Dynamic Load Case 120
Joint 6 Error Plots for Second Dyna.rmc Load Case 120
Joints 1, 2, and 3 Position for akg Dvnarmcs Load Case Two . 121

xiii

Figure 6.30
Figure 6.31
Figure 6.32
Figure 6.33
Figure 6.34
Figure 6.35
Figure 6.36
Figure 6.37
Figure 6.38
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7

Trajectory Used for Third Dynamic Load Change 122

Joint 1 Error Plots for Third Dynamic Load Case 123
Joint 2 Error Plots for Third Dynamic Load Case 123
Joint 3 Error Plots for Third Dynamic Load Case 124
Joint 4 Error Plots for Third Dynamic Load Case 124
Joint 5 Error Plots for Third Dynamic Load Case 125
Joint 6 Error Plots for Third Dynamic Load Case 125
Joints 2 and 3 for Third Dynamic Load Case (5kg) 126
Significant Elements in K; and Kp for Joint 2 (5kg) 126
Reference Model Introduced Lag and Tracking Errors 129
Current Implementation of Trajectory Generation 131
Predictive Implementation of Trajectory Generation 132
Example Output from Predictor 132
Joint 2 Response using Predictor 133
Joint 2 Response using Increased w, 134
PUMA 560 Manipulator 137
CIRSSE Testbed Software 140
Block Diagram of Software Used in DMRAC Experiments . . 141

Synchronization and Data Exchange for Joint Control 147
First Three Joint Tracking Test Trajectory 155
Plant and Model Output for First Trajectory 155
Joint 1 Data for First Trajectory 156
Joint 2 Data for First Trajectory 156
Joint 3 Data for First Trajectory 157
Second Three Joint Tracking Test Trajectory 159
Plant and Model Output for Second Trajectory 159

Xiv

Figure 9.8

Figure 9.9

Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21
Figure 9.22
Figure 9.23
Figure 9.24
Figure 9.25
Figure 9.26
Figure 9.27
Figure 9.28

Joint 1 Data for Second Trajectory

Joint 2 Data for Second Trajectory 160
Joint 3 Data for Second Trajectory 161
Static Load Change Trajectory 162
Joint 2 Static Load Model Following Error 163
Joint 3 Static Load Model Following Error 163
Joint 1 Static Load Model Following Error for 4kg Case Only 164
Joint 2 Static Load Torque Signal 164
Joint 3 Static Load Torque Signal for 4kg Load 165
Dynamic Load Change Trajectory 167
Joint 2 Dynamic Load Model Following Errors 167
Joint 3 Dynamic Load Model Following Errors 168
Joint 1 Dynamic Load Model Following Error for 4kg Load . . 169
Plant and Model Outputs for 4kg Dynamic Load Change . . . 169
Joint 1 Stiction Effects 171
Joint 2 Stiction Effects 171
Joint 3 Stiction Effects 172
Disturbance Rejection Run. 173
Joint 1 Response to Disturbance Rejection Run 173
Joint 2 Response to Disturbance Rejection Run 174
Joint 3 Response to Disturbance Rejection Run 174

Xv

ACKNOWLEDGMENT

I would like to express many thanks to my thesis advisor, Dr. Howard Ka.ufmaﬁ, for
his patience and guidance, and also to the CIRSSE faculty and staff whose comments
were appreciated. A special thanks to the CIRSSE/CTOS/MCS/8th Floor clan who
made my stay at Rensselaer Polytechnic Institute very enjoyable. I would also like
to thank my family, Mom, Dad, Todd, and Jason. Finally, I would like to thank

my wife Linda and my dog Sebastian whose sacrifices have made my stay at RPI

possible.

xvi

ABSTRACT

This project presents the results of controlling a PUMA 560 Robotic Manipufator
using a Command Generator Tracker (CGT) Based Model Reference Adaptive Con-
troller (DMRAC). The goal of the DMRAC algorithm is to asymptotically force the
plant output to follow a known reference model output with dynamics chosen by
the designer. The development of the DMRAC algorithm from its CGT roots is
discussed. Initially, the DMRAC algorithm was run in simulation using a detailed
dynamic model of the PUMA 560. The algorithm was tuned on the simulation and
then used to control the manipulator using minimum jerk trajectories as the desired
reference inputs. The ability to track a trajectory in the presence of load changes
was also investigated in the simulation.

When satisfactory performance in simulation was achieved, the DMRAC al-
gorithm was recoded to run on an actual PUMA 560 Manipulator in the Center for
Intelligent Systems for Space Exploration (CIRSSE) Testbed using the newly devel-
oped CTOS/MCS software package. A discussion of the CIRSSE Testbed, CTOS,
and MCS is also included. As with the simulation runs, the ability to track a tra-
Jectory in the presence of dynamic load changes was investigated using the PUMA
560.

Satisfactory performance was achieved in both simulation and on the actual
robot. The obtained responses showed that the algorithm was robust in the presence
of sudden load changes. These results indicate that the DMRAC algorithm can be

successfully applied to the control of robotic manipulators.

xvii

Ca,

CHAPTER 1

Introduction

This project dealt with the application of a Direct Model Reference Adaptive Con-
trol algorithm to the control of a PUMA 560 Robotic Manipulator. This chapter
will present some motivation for using Direct Model Reference Adaptive Control,
followed by a brief historical review, the project goals, and a summary of the sub-

sequent chapters.

1.1 Motivation for Using Direct Model Reference Adaptive Control

For robotic control, a control engineer may be faced with joint and link flexibil-
ities, unknown manipulator dynamic parameters, non-linear joint interactions, and
changing dynamics due to unknown and varying loads. Traditional robotic control
algorithms have relied on explicit knowledge of the robotic parameters and dynamic
equations [1, 2, 3, 4]. When a designer has limited knowledge of these parameters
and interactions, it may be desirable to utilize adaptive techniques to reduce the
effects of these problems.

As more robots are used for space applications, there will be an increased
need for adaptive control because of the need to keep space robots light weight.
This weight constraint introduces joint and link flexibilities into the control problem
which may necessitate obtaining extensive model information and the synthesis of
observers. Robotic manipulation of objects in space will present a manipulator with
sometimes unknown and possibly varying load inertias which are most suitably
handled by adaptive control methods.

Adaptive control techniques can provide a uniform solution to control prob-

lems involving plant parameter uncertainties and/or environmental uncertainties.

Specifically, Direct Model Reference Adaptive Control (DMRAC) offers the follow-

ing benefits [5]:
o Lack of dependence on plant parameter estimates,
) esymptotica.lly zero output error with all states bounded,
e direct applicability to multiple input-multiple output plants,
o sufficiency conditions which are independent of plant dimension,

e control calculation which does not require adaptive observers or the need for

full state feedback,

e ease of implementation.

Because of these advantages, Direct Model Reference Adaptive Algorithms are

a step towards uniform control of robotic manipulators.

1.2 Literature Review

Adaptive controllers can be divided into two categories, Indirect methods and
Direct methods. Indirect adaptive methods rely on estimates of the plant parameters
* which are then utilized to form the control to be applied to the rpla.nt. This two
stage process of identification and control requires Ehe:{irriplementafion of explicit
parameter identifiers, or observers. In contrast, the Direct methods do not explicitly
try to identify the plant parameters. Rather, they directly adjust the plant control

* using only plant mput and output 51gna.ls Thls prOJect will deal with a Direct

method of adaptxve control.

A well known Direct a.da.ptxve control method is the direct version of the
model reference ada.ptxve controller or DMRAC Model reference control deals with

matching the response of a plant to that of some desired reference model [6]. The

reference model is designed such that it takes into account the desired plant design
specifications. The desired reference inputs are fed to the reference model which
responds in a known fashion according to the design specifications. In a properly
designed DMRA controller, an adaptive mechanism drives the plant outputs to
follow the reference model outputs.

Present DMRAC algorithms have evolved from one of three different ap-

proaches [5]:

¢ Full state access method [7] which assumes that all of the state variables can

be measured,

e input-output methods which originated from augmented error signal concepts

[8] which uses adaptive observers to reconstruct the state vector,

e Command Generator Tracker (CGT) based methods introduced by Sobel,
Kaufman, and Mabius [9]

The later CGT based method [9] resulted in the benefits listed in Section 1.1 but had
the drawback of requiring the plant under control to satisfy a positive real condition.
Stability was guaranteed provided that there existed a feedback gain matrix which
forced the plant to be almost strictly positive real (ASPR). That is, there exists a
feedback gain matrix K such that for a plant represented by the triple (4, B,C),
(C(sI — A+ BKC)™!B) is strictly positive real.

The major drawback to [9] was the necessity of satisfying the positive real
condition. BarKana [10] proposed adding a feed-forward term in parallel with the
original plant dynamics forming an augmented plant. This augmented plant then
had to satisfy the original conditions of [9]. This approach was susceptible to steady-
state tracking errors. By decreasing the contribution from the feed-forward filter,
the true plant would more closely follow the augmented plant output. Asymptotic

tracking was achievable by plants which were high gain feedback stabilizable.

For plants which are not high gain feedback stabalizable, Kaufman, Neat, and
Steinvorth [5] proposed including the feed-forward into the reference model as well.
This modification restored the desired asymptotic model following characteristics of

[6]. This final version of the DMRAC algorithm was selected to control a PUMA

560 Manipulator.

1.3 Goal of This Project

The goal of this project was to test the ability of a DMRAC algorithm to
control a PUMA 560 Manipulator. First, an accurate model of the PUMA 560 was
formulated to test the DMRAC algorithm in simulation. Next, after verification in
simulation, the algorithm was run on an actual PUMA 560 in the CIRSSE' Testbed
using the newly developed CIRSSE Testbed Operating System and Motion Control
System. For both the simulation runs and the actual hardware runs, the robot was

commanded over typical minimum jerk trajectories and subjected to sudden payload

variations.

1.4 Summary of Topics in Thesis

Below is a brief overview of the topics which will be covered in the subsequent

chapters.

e Chapter 2 will present the evolution of the DMRAC algorithm from the Basic
DMRAC algorithm proposed by Sobel, Kaufman, and Mabius [9] to the final

discretized version used to control the PUMA 360 Manipulator.

e Chapter 3 will describe the simulation environment created with the Matlab?

" program along with some further details of the DMRAC algorithm.

ICenter for Intelligent Systems for Space Exploration, Troy, NY
2Mathworks, Inc.

Chapter 4 will describe the process used to tune a DMRAC algorithm and

present the results from some single joint evaluation simulations.

Chapter 5 will present the results of some six joint tracking simulations and

show the effects of changing the tuning parameters.

Chapter 6 will present the results from simulation runs where the robot was

subjected to static and dynamic load variations.
Chapter 7 will address the issue of reducing the trajectory tracking error.

Chapter 8 will describe the CIRSSE Robotic Testbed and the newly developed
CIRSSE Testbed Operating System and Motion Control System. This chapter

will also present some implementation issues.

Chapter 9 will present the results of actual runs on a PUMA 560 Manipulator
in the CIRSSE Testbed. The robot was subjected to static and dynamic load

variations and disturbances.

Chapter 10 will conclude the project with a summary and discussion of simu-

lation and experimental results. Issues for future work will also be discussed.

Appendir A lists the dynamic equations of motion used to simulate the PUMA

560.

CHAPTER 2
Development of the DMRAC Control Law

This chapter will present the development of the Direct Model Reference Adaptive
Control Algorithm which was implemented on the CIRSSE Robotic Testbed. The
motivating Command Generator Tracker theory will be discussed along with the
basic DMRAC algorithm and its various extensions. The discretization of the control
law for implementation on the CIRSSE Testbed will also be discussed. As the
algorithm is expanded in the following sections, each new version will be labeled
with some descriptive words separated by slashes and enclosed in angle brackets
for later reference. For example, the final algorithm in this chapter is labeled -

(BASIC/FF?*/a/bias/disc).

2.1 Goal

The goal in the development of the continuous linear DMRAC algorithm is to
control a plant such that the plant output follows the output of a desired reference
model which is chosen by the designer. The plant is described by the following set

of linear state space equations:

zp(t) = Apzp(t) + Bpup(t) (2.1)
yp(t) = Cpxp(t) (2.2)

where z,(t) is the (n, x 1) plant state vector, u,(t) is the (m, x 1) plant input vector,
yp(t) is the (g, X 1) plant output vector, and A,, B,, C, are matrices of appropriate

dimension.

Without explicit knowledge of A,, B,, and C,, we wish to find a plant input,

up(t), such that the plant output, y,(t), asymptotically tracks the output of some

6

-~

desired reference model, y(t). The reference model is described by the following

linear state space equations:

im(t) = AmZm(t) + Bmtim(t) (2.3)

ym(t) = CmzZn(t) (24)

where z,(t) is the (nm x 1) reference model state vector, um(t) is the (mm x 1)
reference model input vector, ym(t) is the (¢gm X 1) reference model output vector,
and Am, Bm, Cm are matrices of appropriate dimension.

The reference model must have the same number of outputs as the plant (g =
gp) and is assumed to be bounded-input/bounded-output stable. The dimension of
the reference model state vector, however, can be less than the dimension of the
plant state vector. Thus, it is possible to simplify the on-line computation of the

model by choosing n, < n,.

2.2 Command Generator Tracker Development

The DMRAC control law is based on the Command Generator Tracker (CGT)
technique for non-adaptive controllers, proposed by Broussard and O’Brien [11], in
which the plant parameters are assumed to be known. The following development
will review the CGT concept and closely follows the development given in [6].

In this CGT method it is assumed that there exists an ideal plant with ideal
state and input trajectories, z;(t) and u;(t), respectively, which occur when there is
perfect output tracking (i.e., when y,(t) = ym(t) for t > 0). By definition, this ideal
plant satisfies the same dynamics as the actual plant, and the ideal plant output 1s

identically equal to the model output. Thus,

~~~
!Q
(w1}
p

(1) = Apz)(t) + Byup(t)



V(1) = ym(t) = Cpz3(t) = Cnzm(t) (2.6)

We shall assume that the ideal plant state and input trajectories can be formed

as linear functions of the model state and model input. Thus,

[ x;(t) - Su 512 Im(t) (2.7)
u;(t) 521 522 u,,,(t)

Note that we will restrict un,(t) in (2.7) to be a constant input so derivatives of the
model input will not be required. The ideal plant state equation (2.5) and the ideal
output equation (2.6) can be combined, which yields,

[ 35() ] _[4 5 } [ z3() } 8
y5(t) G 0 ]| w)

Substituting equation (2.7) into equation (2.8) yields,

[ z,(t) [ A, By Su Siz } [ Zm(t) ]
= (2.9)
y;(t) Cp 0 Sy S22 um(t)

If we differentiate the first equation in (2.7) and note that u,n(t) is constant

50 %m(t) = 0, we have,

£(t) = Sum(t) (2.10)

Now we substitute the model dynamics (2.3) into (2.10) to obtain,

£(t) = St AnZm(t) + S11Bmun(?) (2.11)

Combining equations (2.11) and (2.6) yields,

[ Znlt) } S (212)

Um(2)

() | SuAm S1uBm
y;(t) Cm 0



Equating the right-hand sides of (2.9) and (2.12) yields, .-

A, B,,] [su Sn} [zm(t)] (.13
Cp 0 S21 S22 um(t)

Noting that z,(t) and un,(t) are arbitrary, we obtain,

SllAm SIIBm

Cm 0 um(t)

Zm(t) J _

S11Am  S11Bm A, B Su S
1 11 _ » Dp 11 212 (2.19)
Cm 0 C, 0 Sa1 Sz
If we define
-1
Q1 A, B
11 12 — p P (215)
0 sz Cp 0
then the solution to (2.14) is,
Su = QuSuAm+ M2ln (2.16)
512 = QuSuBm (217)
San = QuSuAm + Q22Cm (2.18)
522 = lesuBm (219)

For the inverse (2.15) to exist, the number of controls m, must be equal to the
number of outputs g,. If m, > g, then a pseudo-inverse will be required. Broussard

and O’Brien [11] have shown that S;; will exist if:

® u,, is a constant,
e the number of controls m, is not less than the number of outputs gy,

e the product of the i** eigenvalue of {2;; and the j** eigenvalue of A,, does not

equal unity for all i, j.



10

In summary, when perfect output tracking occurs, y,(t) = ym(t) at ¢ = 0, then

the ideal control is given by (2.7) to be,

u;(t) = Szlmm(t) + Sggum (220)

If perfect output tracking does not occur, y,(t) # ym(t) at t =0, we may still

a;hiéve asymptotic tracking if we include a stabilizing output feedback in the actual

plant control law of the form,

up(t) = up(t) + K(ym(t) — vs(t)) (2:21)

To see this, form the error between ideal and actual plant state as follows,

ez(t) = z,(t) — z,(2) (2.22)

Differentiating the error and substituting in (2.1) and (2.5) yields,

Glt) = d5(t) - (1)
= Apz,(t) + Bruy(t) — Apzp(t) — Bpup(t)
= Apez(t) + Bp(uy(t) — u,(t)) (2.23)

Since ym(t) — yp(t) = y;(t) — yp(t) = Cp(z;(t) — zp(t)), (2.21) can be written as,

up(t) = uy(t) + KCpe(t) (2.24)

Substituting (2.24) into the error equation (2.23) yields,

éx(t) = (4, — B,KC,)es(t) (2.25)

From linear control theory, (2.25) will approach zero if K is a stabilizing output

feedback gain; therefore, we desire a controller for which e (t) — 0 as t — oc.



11

Observe that when ez(t) = 0 = z,(t) = z}(t), then Cpz,(t) = Cpz,(t). By definition
(2.6), we have Cpz}(t) = CmZm(t). Therefore, Cpz,(t) = Cnzm(t) = yp(t) = Ym(t)
which gives us asymptotic output tracking as ¢t — co.

In summary, when perfect output tracking does not occur, y, # ym at t =0,
then the actual control to achieve asymptotic output tracking is found from (2.21)

(subst;.ituting in (2.20) for uj(t)) to be,

up(t) = SnZm(t) + S2zum(t) + K(ym(t) — 35(t)) (2.26)

A block diagram of the non-adaptive controller, using (2.26), is shown in Figure 2.1.

This algorithm will be referred to as - (CGT).

52
+
+
53
: - i *
5 LA,., ALlc] e ) x
' 3 m T ‘
E ? *m P N
u : '
: MODEL ;
Ap —~(+)— s S
X '
P i
% B, E
PLAN'rg

Figure 2.1: Non-Adaptive Command Generator Tracker Block Diagram

2.3 Basic Direct Model Reference Adaptive Algorithm

This section will discuss the basic DMRAC algorithm as proposed by Sobel,
Kaufman, and Mabius [9].



12

In the previous section, the final control law (2.26) assumed that the plant
parameters, A,, B,, and C,, were known. If this is not the case then an adaptive
version of the CGT control law is required. The adaptive control law has the same

form as (2.26) and is given below,

up(t) = Kz(8)Zm(t) + Ku(t)um(t) + Ke(t)[ym(t) — yo(2)] (2.27)
where K.(t), K.(t), and K.(t) are adaptive gains. We must now find adaptive laws
for K(t), K.(t), and K,(t) to drive the output tracking error e,(t) = ym(t)—y,(t) —
0 as ¢t — oo. To create more compact equations, we will concatenate the adaptive

gains into a matrix as follows:

K. (t) = [K.(t) K:(t) Ku.(t)] (2.28)
and concatenate the output tracking error signal and the model state and input as

follows:

rt)=|  za(t) (2:29)
Using the above notation simplifications, the adaptive control law (2.27) becomes,

up(t) = K, (t)r(t) (2-30)
From [9], the adaptive law for the gains K;(t), K4(t), and K.(t) is composed

of a proportional and integral part as follows:

Kp(t) = e(t)r(1)]" Tpmo (2.31)
&y ()[r(£)] Time T (232)

Ki(t)
K.(t) = Kp(t)+ Ki(t) (2.33)



13

where ey () = ym(t) — yp(t), Tpro is a constant proportional weighting matrix, Tin; is

a constant integral weighting matrix, Kp(t) is the proportional part of K.(t), and

K(t) is the integral part of K,(t). Note: K(t) is obtained by integrating Ki(t).
From [9], (2.31)-(2.33) will achieve asymptotic output tracking, e, — 0 as

t— oo, if the' following are true:
¢ T, is positive semi-definite,
o Tin. is positive definite,
o The plant is Almost Strictly Positive Real.

The last condition, ASPR plant, means that there exists some feedback gain ma-
trix, K, such that the fictitious stabilized plant, described by the triple (A, —
B,KC,, B,,C,), is strictly positive real. The block diagram for the basic DMRAC
algorithm is shown in Figure 2.2. This algorithm will be referred to as - (BASIC).

N
s C : <+
1\“ 0 Xn m fxﬂ \ 3,
u B ] ;
m B_ 5
MODEL !
Gain
: Adaptation
A LG, —
p xp| P i 'yp
u, Bp
PLANT

Figure 2.2: Basic Direct Model Reference Adaptive Controller Block
Diagram



14

2.4 Modification of Basic DMRAC for Non-ASPR Plants

The development in the preceding section required the plant to satisfy an
Almost Strictly Positive Real condition. For plants which are not ASPR, BarKana
and Kaufman [12, 13] proposed augmenting the plant with parallel dynamics to make

the augmented plant ASPR in which case the results from the previous section will

hold.

The basic procedure, as discussed in [14], will now be presented. Let G(s) be

the transfer matrix of a continuous-time linear non-ASPR plant,

G(s) = CylsI - A B, (2.34)

which is not necessarily stable or minimum phase. Assume that there exists another

transfer matrix, H(s), such that the resulting closed-loop transfer matrix,

Ge(s) = [I + G(s)H(s)] ™ G(s) (2.35)

is asymptotically stable and H(s) is ASPR. In this case, there exists a feed-forward

filter, D(s), such that the augmented (open-loop) plant transfer matrix,

G,.(s) = G(s) + D(s) (2.36)

is ASPR where D(s) = H~!(s). One widely used choice of D(s) is,

Ky

l1+71s (2:37)

D(s) =

where 7 is selected sufficiently small and Ky is a constant gain matrix. The aug-

mented (open-loop) transfer matrix then becomes,

G.(3) = D(s) + G(s) = 7 f':_s + G(s) o (2.38)



15

A block diagram of the DMRAC controller with the augmented plant is shown in
Figure 2.3.

Notice that the error, e,, in Figure 2.3 is the difference between the model
output, ynm, and the augmented plant output, y,. Thus, ym — ¥, is guaranteed to go
to zero, not Y, —Yp. Since we are interested in having the original plant output track
the xﬂodel, || K4 should be chosen to be very small. In this case, Ga(s) = G(s) and
the original plant output, y,, will closely approximate the reference model output,
Ym. This result holds if G(s) is output stabilizable via high feedback gains, K. If
the plant is not stabilizable by a high feedback gain, then an appreciable steady
state error will occur. Although it is fairly easy to select supplemental dynamics,
D(s), in (2.38) to satisfy the ASPR condition, the resulting controller will in general

result in a steady state error that is bounded but not equal to zero.

{K, ]
1___\
. +
O,
: l_‘. : +/
1s =G ~ i
| SO~ S B o
“m i IB [ : "j- ------- Gain
= MODEL! |y Adaptation
I ) : G
LA 1 s | By %
P 2 u r *p cp i% W Pl 1es
Wi S
i 2 G(s) PLANT! ——
' AUGMENTED PLANT

Figure 2.3: DMRAC with Augmented Plant Block Diagram

The gain adaptation is the same as in the previous section, (2.27)-(2.33). This
algorithm will be referred to as - (BASIC/FF).



16

2.5 Modification to Insure Asymptotic Model Following

In the preceding section, we extended the Basic DMRAC algorithm to include
Non-ASPR plants at the expense of an added steady state model following error. To
compensate for this error, Kaufman, Neat, and Steinvorth [5] proposed incorporating
the supplementary feed-forward dynamics of (2.38) into the reference model as well.
This section will follow the development given in [14]. For a stability proof see [5].

Consider the original plant described by (2.1) and (2.2) and the reference
model given by (2.3) and (2.4). As in the previous section, we define an augmented

plant with an output of,

£5(1) = 15(8) + D [up(2)] (2.39)

where D denotes the operator defined by (2.37). As with the plant, we add the

feed-forward dynamics to the reference model as well, by defining an augmented

model output,

zm(t) = ym(t) + D [up(t) — Ke(t)e(2)] (2.40)
where K.(t) is the adaptive error gain matrix which is a function of e.(t) (to be

defined next).

Now, consider the error between the augmented model output and the aug-

mented plant output as follows,

eu(t) = 2m(t) = 2(1) (2.41)

This error will become the new error term for the adaptive controller. Substituting

(2.40) and (2.39) into (2.41) yields,

ex(t) = ym(t) = 15(t) = D [Ku(B)eu(t)] (242)



17
or

D™ le:(t)] + K,(t)e,(t) =D ley(2)] (2.43)

Therefore, if the DMRAC controller is designed such that e,(t) — 0 as ¢t — oo and
if D(s) (2.37) is stable, then from (2.43), e,(t) — 0 as { — oo which is the desired

result.

Note that (2.42) can be written as,

e.(t) = [T+ DK.] ™ &(t) (2.44)

which is equivalent to adding a time varying filter operating on e,(t) to form e.(t).

Figure 2.4 shows the resulting block diagram using this modification (where Dis
given by (2.37)).

) +
ey L)
gy >
e 1 Xm xn §
mj MODEL Adaptation

Figure 2.4: DMRAC with Supplementary Feed-Forward in Plant and
Model Block Diagram

'Asymptotic tracking is achieved [14] when the e,(t) terms in the gain update

equations, (2.31)-(2.29), are changed to e.(t) as follows,



18

Kp(t) = et)[r(t)] Tpro (2.45)
Ki(t) = e(O)r(t)] Tine (2.46)
K.(t) = Kp(t)+ K;(t) (2.47)
where
e:(t)
r(t) = | zm(2) (2.48)

um(t)

This algorithm will be referred to as - (BASIC/FF2).

2.6 Addition of Plant Output Derivative Term

One further modification to the algorithm, proposed by Steinvorth [15], was
to inject a derivative term into the plant output, y,, to form the augmented plant

output,

ya(t) = yp(t) + ayp(t) (2.49)

or taking the Laplace Transform,

va(s) = [as + 1] y,(s) (2.50)

where a is a positive diagonal matrix of weighting constants. In this case, the
above algorithms would need to be modified by replacing the original y, with the
augmented plant output y;. This modification was added to help reduce the high
frequency oscillations which generally occur in adaptive algorithms. Figure 2.5 shows
(BASIC/FF?) with the derivative term addition. This modified algorithm will be
referred to as - (BASIC/FF?/a).



19
From [15], the plant output can be expressed as,

¥p(s) = G(s)up(s) (2.51)

where G(s) is given by (2.34). Substituting (2.51) into (2.50) yields,

ya(s) = [as + 1) G(s)u,(s) (2.52)

In steady state, the output of the augmented plant, yq, will be the same as
the original plant, y,, since the derivative term will vanish. Note that a large term

in o (2.49) will increase the model following error during transient periods.

1Ku[
K- 3
= 3
s G
e
= MODEL Adepution
: = a1
o] R
Tung Varying Filter
§G(s) PLA-NT EDerivuive Term

Figure 2.5: DMRAC with Added Plant Output Derivative Term Block
Diagram

2.7 Addition of a Bias Term to Provide Adaptive Excitation Throughout

Range of Interest

‘When applying the DMRAC algorithm to non-linear systems, such as the
PUMA 560 Manipulator, the origin of the model coordinate system should be chosen



20

such that the adaptation gains have a non-zero excitation throughout the range of
interest [16].

To illustrate, assume for some non-linear plant that in order to maintain an
output of y, = [0.. .0]7, a non-zero input, Uy, is required, and that a zero command
to the reference model, u,, = [0...0]T, will result in a zero model output and state
vector. Now, assume it is desired to drive the plant to this zero position. If un,
is set to zero, using (BASIC), the reference model state and output vectors will
go to zero. Assuming that the plant was servoed to zero, then e, = y,, — y, will
also be zero. The vector, r(t), defined by (2.29) will be zero which will result in a
control, from (2.30), of u, = [0...0]T. Since the plant requires a non-zero control
to maintain a zero output, the DMRAC algorithm will require a small error signal
in order to apply a non-zero control which will result in a steady-state error at
the zero output position. This result holds for the augmented DMRAC algorithm
(BASIC/[FF?) as well.

If we shift the reference model coordinates by a constant bias term, then a zero
command to the reference model, u, = [0...0]7 will produce non-zero outputs for
the model state and output vectors which, in turn, will produce a non-zero command
to the plant by (2.30). The bias term is subtracted from the model command, u,,

and the plant output, y,, as follows,

Um(t) = Gm(t) = Ghias (2.53)
up(t) = Gp(t) — Gbias (2.54)
where %, (t) is the original model command in the original coordinate system, um(t)
is the new biased model command to be applied to the model dynamics, g,(t) is
the actual plant output, y,(t) is the new biased plant output to be used to form the
error signal, and g¢u4, is a constant bias term. For robotic manipulators, gsie, has

units of radians and should be selected such that a new plant output of y, = [0...0]



21

corresponds to an equilibrium position (i.e. no gravity loading). Figure 2.6 shows

the DMRAC algorithm with the bias terms added. This algorithm will be referred
to as - (BASIC/FF?*/a/bias).

gy
Ira B s
...... guigy 5‘*‘>‘L
Gain i
Adaptation

Time Varying Filter

T
v
'
'

Derivative Term

Figure 2.6: Addition of Bias Term to DMRAC Algorithm

2.8 Discretization of DMRAC Control Law for Implementation

In order to implement the DMRAC controller on the CIRSSE Testbed, the
continuous time equations must be converted to discrete time so they can be coded
into the CIRSSE Testbed Motion Control System which only allows for discrete

control of the robotic manipulators.

To discretize the algorithm, the following continuous time dynamics were con-

verted to discrete time:
e Reference model dynamics,
o feed-forward dynamics,

e integral adaptation dynamics, (2.32).



The discretization of the above dynamics will be discussed below. This discretized

algorithm will be referred to as - (BASIC/FF?*/a/bias/disc).

2.8.1 Reference Model Dynamics

The reference model, being a linear time invariant continuous system, is easily
converted to discrete time using a Zero Order Hold [17] as described below.

Consider a continuous time system given by the following state space model,

g.(t) = Acq(t) + B.u(t) (2.55)
ve(t) = C.qc(t) + Dcu(t) (2.56)

If we define the following constant matrices,

T
= [ eAB.dx :
By /0 e (2.58)
Cs = C. (2.59)
Di = D, (2.60)

where T is the desired sample time, then (2.55) and (2.56) can be expressed in

discrete time as,

T = 4,8 4 ByutD (2.61)
y‘(ikT) - qung)+ Dgu*T) (2.62)

If u(t) is held constant over the T-second intervals kT < ¢ < kT + T;v that is,

uw(t) = u D kT <t <kT+T (2.63)



23

then the following will hold,

g(t) = o7 (2.64)
we(t) = 3§ (2.65)

which is the desired result.

The function ¢2d in Matlab was used to perform this conversion once A, B.,

and T are known [18].

2.8.2 Feed-Forward Dynamics

The feed-forward dynamics, as given by (2.44), constitutes a time varying
filter which does not have an easily derived closed form discrete counterpart. By
rearranging the feed-forward dynamics, we can achieve an exact discretization much

easier.

Substituting (2.47), (2.48), and (2.30) into (2.40) and (2.39) yields,

Zm(t) = ym(t)+ D [Kr(t)zm(t) + Ku(t)um(t)] (2.66)
2(t) = yp(t) + D [Kz(t)zm(t) + Ku(t)um(t) + Ke(t)e(t)] (2.67)

Recall that the augmented error is defined as e,(t) = zm(t) — z,(¢). Using (2.66)
and (2.67), the DMRAC a.lgorithni block diagram can be rearranged as shown in
Figure 2.7 where D(s) represents the D operator and is given by (2.37).

This modification results in splitting the single time-varying filter, (2.44), into
two linear time invariant dynamic feed-forward blocks, D(s). These two blocks can
be represented in state space form and converted to discrete time using a Zero Order

Hold as was done for the reference model in the preceding section.



Derivative Term

---------------------------------------------

Figure 2.7: Rearranged DMRAC Algorithm Block Diagram

2.8.3 Integral Adaptation Dynamics

The adaptation laws require the integration of K/(t), see (2.46). This integra-
tion was discretized using Backwards Rectangular Approximation® [19] which results

in the following discrete approzimation of the continuous adaptation equations,

KU = NI, (2.68)
KFTHD o gD + T, D DT T, (2.69)
KU = gUT) | g(6T) (2.70)

where T, is the sample time. The gains Kp, K;, and K, are updated every T,

seconds.

!The integration was also tried using Trapezoidal Approximation but there was no significant
difference, thus the more efficient Backwards Rectangular Approximation was used.



25

2.9 Summary

In this chapter we introduced the end goal of the continuous DMRAC algo-
rithm and discussed the Command Generator Tracker algorithm of Broussard and
O’Brien, (CGT), which the DMRAC is based on. We then presented the basic DM-
RAC algorithm, (BASIC), as was proposed by Sobel, Kaufman, and Mabius. Next,
we discuséed two modifications to the basic algorithm. The first modification was the
augmentation of the plant to support Non-ASPR plants as proposed by BarKana
and Kaufman - (BASIC/FF). The second was the inclusion of the augmented
dynamics in the model to achieve asymptotic tracking as proposed by Kaufman,
Neat, and Steinvorth - (BASIC/F F?). We then discussed the addition of a plant
output derivative term as proposed by Steinvorth and Kaufman, (BASIC/FF?/a}),
and the addition of a bias term as proposed by Cummings, Swift, and Kaufman,
(BASIC/FF?/a/fbias). Finally, we discussed the discretization of the algorithm
for implementation on the CIRSSE Testbed, (BASIC/FF?*/a/bias/disc).



CHAPTER 3

Simulation Environment

In order to test the performance of the DMRAC algorithm, a realistic simulation
environment was needed. The Matlab program from The Mathworks, Inc. [20] was
chosen as the “base” for the simulations. Matlab is a high-performance interactive
software package for engineering numerical computation. Matlab integrates numeri-
cal analysis, matrix computations, and graphics in an easy-to-use environment. The
DMRAC algorithm was written in “Matlab Code” as an “M” file [20] since modifica-
tions could be made easily without the need to compile any code. The computation
intensive routines (integration and model dynamics simulation) were coded in C and
linked in with the Matlab program using the Matlab supplied CMEX utility [20].

The simulation was composed of the following five modules of code:

Simulation Administrator was responsible for coordinating the simulation and

transferring data between the various modules.

Joint Control Algorithm Module was used to compute the DMRAC control

law to be applied to the robot.

PUMA 560 Dynamics Module modeled the dynamics of the robot.

ODE Integration Routine Module was used to integrate the state vector re-

turned by the Dynamics Module.

Trajectory Generator Module was called by the DMRAC Algorithm to compute

the trajectory for the robot to follow.

26



27

3.1 Simulation Administrator

The simulation administrator coordinats the simulation and is responsible for
transferring data between the other various modules. The flow diagram is shown in

Figure 3.1 and will be described below.

Clip Torques Retumed from
. Controller and Store
Begin Interval Loop for Next Interval
Determine Starting and Stmulste Robot Dynamic
Ending Time of interval Over Current Interval Using
{ Retrieved Joint Torques
Check for Losd Chan l
l o= Save Current Robot
J} Position and Velocity
Retrieve Joint Torques for Next Interval
Stored from Last Interval ‘
‘ Save Data for Plotting
Call Control Algorithm to
Calculate Torques for Next
Interval

Figure 3.1: Simulation Administrator

The first task is to initialize the PUMA model, controller, and trajectory
generator modules along with some initialization of local variables used by the ad-
ministrator. Next, the control interval loop is begun. Each pass through this loop
constitutes a new update of the control torques applied to the robot. The sample
time used in the simulations, as well as on the actual hardware, is 4.5 ms.

At the beginning of each interval cycle, the administrator determines the start-
ing and ending times, in seconds, of the interval loop, ¢, and ¢; respectively. Note:
t; —t, = 4.5 ms. Next, the administrator checks for any load changes. If a load
change is desired, the model parameters are changed for Link 6 to reflect the ad-
dition or subtraction of the load. Note: A load change can only occur at the start

of an interval. Next, the joint torques calculated in the last interval are retrieved



Table 3.1: Maximum Joint Torques for PUMA 560 Manipulator

| Joint | Maximum Torque in (Nm) |
1 97.6
186.4
89.4
24.2
20.1
21.3

O O] W] I N

for use during the integration of the model state equations. For the first interval,
the retrieved torque values are set to {0,0,0,0,0,0}. The retrieved values will be
referred to as [,

The joint control algorithm is now called and is passed the position and velocity
of the joints at the start of the interval. The control algorithm returns a vector of
joint torques. These returned joint torques are then clipped at the maximum torque
values for the joints and stored for use in the next interval. The torques used in
the simulation are joint torques, not motor torques. From [21], the maximum link
torque values for the PUMA 560 Manipulator are shown in Table 3.1. The clipping
of the joint torques allows for an accurate simulation of amplifier saturation in the
motor drivers which could happen on the hardware in the Testbed.

The robot dynamics are then simulated over the current interval by integrating
the robot state equation from ¢ = ¢, to t = t; using the initial conditions (joint
position and velocity) saved in the previous interval and the retrieved torque values
T',.:. Note: The torque values are held constant throughout the interval (Zero Order
Hold) which is customary for discrete control. The position and velocity of the robot
joints at the end of the interval are saved. The saved values are used by the control
algorithm and also by the integration routine. Finally, the administrator collects

any desired data to be plotted and stores it away in an array.



29

3.2 Joint Control Algorithm

The joint control algorithm is called at each interval to calculate a 6 x 1 vector
of joint torques to be applied to the robot joints at the start of the nezt interval.
The control algorithm is passed the position and velocity of the robot at the start
of the interval only. This section will describe the implementation of the discretized

DMRAC algorithm, (BASIC/FF?*/a/bias/disc), used in the simulation.

3.2.1 Reference Model

The choice of the reference model order is a compromise between high gains
and excessive response delays [16]. If the reference model order is too ‘low, then
excessively large gains may occur which may lead to control saturation in the com-
mand to the plant. On the other hand, if the reference model order is too high, then
excessive response delays may be produced.

For the control of the PUMA 560 Manipulator, six decentralized linear models,
each with an order of two, were chosen yielding a total reference model order of 12.
The independent second order models were chosen [16] because in a PUMA 560,
the mass matrix is approximately diagonal for all joint values making the system
almost decoupled. Thus, the second order model should be a good approximation
for each joint leaving the coriolis, centrifugal, and gravity terms to be adapted to
by the DMRAC algorithm.

The selected reference model transfer function for each joint is given by,

u2

Gm,(5) = Ymi(8)/umi(s) - (3.1)

82 + 2(iwn, s + w2,

where i is the joint number {1,...,6}, wn, is the natural undamped frequency, and

¢: is the damping ratio. Equation (3.1) can be expressed in state space form as,



30

0 1 0
Zmi(t) = [ sz.'(t)'*'[ ]um'(t) (3.2)
—w,":'. —2(wn, w,":‘. .
um® = [10]em®) (33)

where Z,,,(t) is a 2 x 1 state vector. After selection of the wn, and (; values, (3.2)

and (3.3) were discretized as discussed in Section 2.8.

3.2.2 Feed-Forward Filter

The feed-forward filter dynamics for each joint are given by (2.37) as,

K,

Dis) = l1+7s (3.4)

which has the following state space representation,
z5(t) = [-1/r]zs(t) + [Ka/7]ug(t) (3.5)
yr(t) = [Uzu(t) (3.6)

where K, is the DC gain, 7 is the time constant, z4,(t) is the filter state variable,
and 7 is the joint number {1,...,6}. As with the model equations above, (3.5) and

(3.6) were converted to discrete form.

3.2.3 Bias Term

The bias term, as discussed in Section 2.7, was included to shift the reference
model coordinates. By examining the zero position of the robot, Figure 3.3, it is
clear that y, = {0,0,0,0,0,0} is not an equilibrium. A bias of,

T

Qbias = {07 %1 101 01 0} . (3-7)

o

will shift the zero position to that shown in Figure 3.2.



31

Figure 3.2: Stable Equalibrium for the PUMA 560

3.3 PUMA 560 Manipulator Dynamic Model

In order to test the performance of the DMRAC algorithm, an accurate non-
linear coupled model of the manipulator was needed. A full explicit dynamic model
of the PUMA 560 Manipulator, derived by Armstrong, Khatib, and Burdick [21]
was selected. The formulation of the PUMA model was computationally efficient
using 25% fewer calculations than a six degree of freedom recursive Newton-Euler
method (RNE). The algebraic formulation of the model also allowed for the easy
addition of a load by modifying the mass, center of mass, and inertia parameters

for Link 6 as described in [22].

3.3.1 Coordinate Frame Assignments

The chosen coordinate system for the PUMA 560 Manipulator is identical
to that used in [23] except for the labeling convention'. Figure 3.3 shows the six
rotational joint axis, {z1,...,2s}, for the PUMA 560. Only the rotational, z;, axis

1[23] defines labels for all 18 Testbed joints. Since this project dealt with only the six joints of
the PUMA, the coordinate labeling of [21] will be used.



32

are shown in the figure. Positive rotations follow the right hand rule - counter-

clockwise looking down the z axis. The six joints of the PUMA 560 are as follows:

e Joint 1. A vertical rotation about the base, z;.

Joint 2. A horizontal rotation about the shoulder, z,.

“Joint 8. A horizontal rotation about the elbow, z;.

Joint 4. A twist of the wrist, 2,.

e Joint 5. An inclination of the wrist, zs.

Joint 6. A twist of the mounting flange, zg.

The position of the manipulator in Figure 3.3 illustrates the zero position. Note:

When Joint 5 is at zero, axis z4 and 2z¢ coincide.

3.3.2 Derivation of Dynamic Equations

From [24], the dynamic equations used to model the PUMA 560 Manipulator

A(0)8 + B(6)[66] + C(6)[6] + g(9) + b(8) =T (3.8)

where

A(8) is the 6 x 6 kinetic energy matrix,

B(8) is the 6 x 15 matrix of coriolis torques,
C(0) is the 6 x 6 matrix of centrifugal torques,
g(8) is the 6 vector of gravity torques,

8 is the 6 vector of joint accelerations,

[66] is the 15 vector of velocity products,



33

%

Figure 3.3: PUMA 560 Coordinate Frame Assignments

[6?] is the 6 vector of squared velocities,
b(#) is the 6 vector of friction torques,

and I is the 6 vector of joint torques.
Note:

[éel = [0'10'27 élo'fh ey 0.19-6’ 0.20.37 v 70.40.31 éSéG]T
(6] = 63,63, 63)"

The equationé for A(8), B(8), C(9), and g(8) were compiled from [21] and are de-
scribed in detail in [24]. They will not be presented here because of space limitations
(see appendix?). The dynamic and kinematic parameters for the PUMA 560 Ma-
nipulator were compiled from [21] and [25] and are also described in [24]." Tables 3.2

and 3.3 show the manipulator parameters as listed in [24]. The motor inertias listed



34

in Table 3.3 have been reflected to the link side by multiplying them by the square
of the gear ratio, n. The inertias in Table 3.3 are about the center of mass of the

respective link except where noted.

Table 3.2: Masses and Centers of Gravity of Puma Arm Links

mass rr Ty T:
L1 ke) | (m) | (m) | (m) |
Link 1} 12.95| 0.0 0.0389 | -0.3088

Link 2 | 17.40 | 0.068 | 0.006 | -0.016
Link 3| 4.80 | 0.0 -0.070 | 0.014
Link 4 | 0.82[0.0 0.0 -0.019
Link 5| 0.34 | 0.0 0.0 0.0
Link 6 [ 0.09]0.0 0.0 0.032

The friction vector, b(d) in (3.8), was arbitrarily set to,

b(9) = K6 (3.9)

where K, = diag(5,5, 5,10, 10, 10), to provide some viscous? friction to the model.
The units of K, are N msec/rad. No friction identification was performed on the

PUMA 560 Manipulator.

?Initially a Viscous-Coulomb-Stiction friction model was used which resulted in a very stiff set
of equations for the model. This slowed the model integration down and, as a result, the simulation
was slowed down by a factor of about 10. The Viscous-Coulomb-Stiction model was abandoned
due to this delay.

Table 3.3: Diagonal Inertia Terms and Reflected Motor Inertias

Iz Iy I n*Imotor n

s (kg-m?) (kg-m?) | (kg-m®) | (kg-m®) | Gear Ratio
Link 1 2.35" 2.34" 0.197 1.14 62.61
Link 2 0.130 0.524 0.539 4.71 107.36
Link 3 0.066 0.0125 0.086 0.827 53.69
Link 4 | 1.80x10~2 | 1.80x10~3 | 1.30x10~° 0.2 76.01

| Link 5 | 0.30x10~3 | 0.30x10~° 0.40x10°° 0.179 - 71.91
Link 6 | 0.15x10~3 | 0.15x10~° | 0.04x10~° 0.193 76.73

= = About the Coordinate Frame



35

The above model can be cast into state space form by solving (3.8) for § as

follows:

§ = A"1(8) [T - B(6)[66] — C(6)[6%] - g(8) — ¥(6)] (3.10)
The kinetic energy matrix, A(8), is positive-definite [1] and therefore non-singular;

thus, the inverse exists. Now, by choosing the following 12 x 1 state vector,

N
z= (3.11)

where 8 = [0;,...,66]T and v = [él, ...,06)T, (3.10) can be written,

§ = v (3.12)
5 = A™0) [T - B(6)(d4) - C(8)(#] - 9(6) — ¥(0)] (3.13)

The robot d)"na.mics can now be simulated by integrating (3.12) and (3.13) over the
period of interest with appropriate initial conditions (joint position and velocity)

and with T set to the constant torque values calculated by the control algorithm.

3.3.3 End-Effector Parameters

The PUMA 560 Manipulator in the CIRSSE Testbed includes a Force Torque
Sensor (FTS) and a pneumatic gripper which are attached to the last link of the
PUMA. The combined weight of the FTS and gripper is about 3.4 lbs which was
signiﬁca.nt'enough to affect the accuracy of the model. The model developed in
the preceding section did not include the dynamic parameters of this end-effector.
In order to achieve accurate modeling of the actual Testbed arm, the dynamic
parameters of the end-effector were measured, [22], and included in the model by
modifying the mass, inertia, and center of mass parameters of Link 6 as in [22]. The

gripper load parameters are given in Table 3.4.



36

[ Item | Units | Value |
Mass kg 1.548
Distance to Center of Mass along zs| m 0.0
Distance to Center of Mass along ys m 0.0
Distance to Center of Mass along 26 m 0.1357
Moment of Inertia about zg kgm?® | 33.2 % 10~°
Moment of Inertia about ys kgm?* | 33.0 10~
Moment of Inertia about zg | kgm? | 1.18%107°

Table 3.4: End-Effector Parameters

3.3.4 Verification of Model

The model was verified by comparing it to an existing recursive Newton-Euler
(RNE) formulated model of the PUMA 560. The kinetic energy, coriolis, centrifugal,
and gravity matrices were extracted from the RNE model for various joint positions
with the use of a RNE inverse dynamics routine. By selecting the joint velocities,
joint accelerations, robot base velocities and accelerations, and tip forces, it was pos-
sible to make individual components of the kinetic, coriolis, centrifugal, and gravity
matrices show up in the joint torque vector returned from the RNE inverse dynam-
ics routine. These torque vectors could then be used to reconstruct the dynamic
matrices.

The extracted matrices calculated by the RNE model were then compared
to the kinetic, coriolis, centrifugal, and gravity matrices generated by the explicit
model of Armstrong. Both models agreed to within accountable numerical round
off errors. The same kinematic, mass, and inertia parameters® were used for both
models (Tables 3.2 and 3.3).

As another test of the mass and center of mass parameters, the gravity torque
vector, g(9) in (3.8), was used to compensate for the gravity loading on the actual
PUMA 560 arm in the CIRSSE Testbed [26]. When the open-loop gravity control
was applied to the arm, the links could be freely moved throughout their entire joint

3The gripper parameters were not used for the comparison



37

space and would hold any position when released without falling due to gravity.
Thus, it can be assumed that the manipulator mass and center of mass parameters

were quite accurate.

3.3.5 Robot Model Implementation

: -The model was coded in C and interfaced to Matlab using the CMEX utility
supplied with Matlab which allows for linking of C code directly into the Matlab
environment [20]. By implementing the model in C rather than as a standard
Matlab “M” file, a reduction in the model computation time by a factor of 4 to 5
was achieved. Fast simulations greatly reduced the amount of time needed to tune
the adaptive controller. Note: None of the PUMA 560 model information was used
in the DMRAC algorithm. The dynamic model was created for simulation purposes
only.

3.4 Integration Routine

The integration routine used to integrate the robot dynamic equations was
obtained from Sandia National Labs [27] and was also interfaced into Matlab using
the CMEX utility. The FORTRAN implementation of the integrator allowed for
fast, accurate integration of ordinary differential equations. The algorithm is very
robust and is described in detail in [28]. A brief description of the routine, referfed
to as newodetf, follows*.

Newodeif integrates a system of n first order ordinary differential equations of

the form,

é%t') = filt.n(8),92(t), - ¥a(2)) (3.14)

4This information was extracted from the programming comments in the code as no manual
for the integrator existed.



38

where i = 1,2,...,n. The solution is returned at evenly spaced discrete moments in
time, called mesh points, which can be selected by the user. In our case, newodeif
is used to integrate from the start of the control interval to the end of the control
interval. The solution is only returned for the end of the interval.

.Newodcz'f is composed of the following three routines:
1. DEisa supervisor which directs the solution.
2. STEP] advances the solution one sample step.
3. INTRP interpolates at the output points.

The routine DE controls the integration and calls STEP! as needed to integrate
between the mesh points. In our case, the step size is set to the sample period
since we are not interested in values between the sample intervals. The routine
STEP! performs the actual integration using a modified divided difference form of
the Adams Pece Formulas [28]. To improve absolute stability and accuracy, STEP!?
uses local extrapolation. The order and step size of the integration is automatically
adjusted to control the local errcr. Special devices are also included to control
roundoff error. To improve accuracy near the mesh points, STEP! approximates the
solution by a polynomial and calls INTRP to approximate the solution by evaluating
the polynomial at the mesh points. To improve accuracy at the last endpoint, STEP!

integrates past the point and interpolates the solution using INTRP.

3.5 Trajectory Generator

The trajectory generator (TGEN) module is responsible for planning the joint
space trajectories for the manipulator. These trajectories are passed directly to the
reference model. The TGEN is called every interval by the joint control module
and must return the desired position, velocity, and acceleration setpoints which the

controller tries to servo the arm to meet. The trajectories produced by the TGEN



39

are minimum jerk, meaning that the derivative of acceleration (jerk) is minimized
producing very smooth motions. The equations used to create the minimum jerk
trajectories are from [29] and will be outlined below.

The TGEN produces a minimum jerk trajectory based on a set of supplied knot
points. Each knot point indicates a point in the joint space of the manipulator which
shoula be “visited” by the robot. The TGEN will produce minimum jerk trajectory
segments between each pair of adjacent knot points such that the manipulator stops
at each knot point in the order in which they are specified. Associated with each
knot point, except the first, is a time value which specifies the amount of transit time,
in seconds, between the current and previous knot points. The first knot point is
implicitly set to the initial “shut-down” position of the robot {0, —45,180,0,45,90}
degrees, see Figure 3.4) and can not be changed by the user. To wait at a knot point

position, the knot point can simply be repeated in the list.

—7

Figure 3.4: Shutdown Position, {0, —45,180,0,45,90} degrees

Between each pair of adjacent knot points there is a trajectory segment. Each
trajectory segment is described by the following joint position, velocity, and accel-

eration equations:



[ g1 (t<0)
RS (0<t< i)
00 = { e Bl (Gsi<d)
o2y eld ol el (L <t<T)
‘q‘lﬂ (t>T)
0 (t <0)
aff (0<t<i
. = et | a aT?
() = { e Fsi<)
& —oTt+ef (T<t<T)
| 0 t>T)
0 (t<0)
at (0<t<d
6(t) = § —at+f (T<t<T)
at — aT (¥$t<T)
| 0 t>T)

where

i is the joint number {1,...,6},

j is the index of the current knot point {0,1,2,...} (0 indicates the

' 1mphc1t knot point),
q,-[jI is the current knot point which is being moved towards,
q,p 1 is the previous knot poii;t,
o =32a7 - ¢/ )/(T°),
T is the desired time for completing the trajectory segment,
't is the relative time on the trajectory segment (¢ = 0 indicates position

q,lﬂ and ¢ = T indicates position q?'ll),

40

(3.15)

(3.16)

(3.17)



41

and 6(t), 6i(t), and 8;(t) are the desired position, velocity, and acceler-

ation of joint 7 at relative time t.

The joint position, velocity, and acceleration functions for an example mini-
mum jerk path are shown in Figure 3.5. For this single joint example, the starting
and ending knot point values were 0 degrees and 90 degrees respectively and the

time value was 4 seconds.

100 . Position (deg) 50 Velocity g(deg/sec);

o 72

/; 20

40k / '
20 10

0 1 2 3 4 0 1 2 3 4
time, seconds ‘time, seconds

&

50 Acceleration (deg/sec/sec)

50 H i
0 I 2 3 4

time, seconds

Figure 3.5: An Example Minimum Jerk Path

The minimum jerk joint position command (3.15) was passed to the reference

model input u,,. The velocity and acceleration equations were not used.



42

3.6 Summary

In this chapter we discussed the five modules comprising the simulation en-
vironment. The first module, the simulation administrator, is responsible for co-
ordinating the simulation and moving data around. The second module, the joint
control algorithm, computes the control law to be applied to the robot manipula-
tor at each interval. Details of the reference model, feed-forward filter, and bias
term selection were discussed. Next, the PUMA 560 dynamic model module was
developed. It is important to note that the robot model is used only for simulation.
No model information is used in the DMRAC algorithm. The method used by the
ODEFE integration module to integrate the robot model was then discussed. The final
module, the trajectory gencrato;', is used to generate the desired joint motions which

are passed on to the joint control algorithm.



CHAPTER 4

Simulation Results (Tuning and Joint Evaluation Cases)

This chapter will present the results of the Matlab simulations of Direct Model
Reference Adaptive Control of a six link PUMA 560 Manipulator, fully-centralized.
First the issue and method of tuning a DMRAC algorithm will be discussed. Next,
the tracking performance of the PUMA 560 under DMRA control will be tested on

a joint by joint basis. All results will be displayed with the bias term, guias removed

(Section 2.7).

4.1 Tuning

This section will describe the process used to tune DMRAC algorithms in
general. Specific tuning for the control of the PUMA 560 Manipulator will be

tllustrated.

4.1.1 Tuning Parameters

For the fully centralized DMRAC algorithm with the plant derivative out-
put term and the supplementary feed-forward in the reference model and plant,
(BASIC/FF?*/a/bias/disc), there are 1182 parameters to be selected, see Table 4.1.
At first, this number seems very intimidating, but as we will show, the number of
tuning parameters can be greatly reduced by some simplifications and by adjusting
the parameters in groups rather than individually.

The most drastic reduction in the number of tuning parameters can be achieved
by forcing the integral and proportional adaptation weighting matrices, Tin¢ and Tpro
from (2.68-2.69), to be diagonal. This reduces the number of tuning parameters from
1182 to 78.

The reference model dynamics have 12 tuning parameters, six wy,'s and six ¢;’s.

43



44

Table 4.1: Tunable Parameters for (BAS]C’/FFZ/a/bzas/dzsc)

{ Parameter | Description ' ' || Values |

Tint 24 x 24 integral weighting matrix 576
Tpro 24 x 24 proportional weighting matrix 576

W, Undamped natural frequency for Joint : model 6

G Damping ratio for Joint ¢ model 6

L« 6 x 6 diagonal plant derivative weighing matrix 6

K, DC gain of Joint : supplementary feed-forward block 6

| T Time constant of Joint ¢ supplementary feed-forward block 6

[ ~ , Total || 1182 |

It is customary in robotic applications to tune controllers such that critical damping

is achieved so there is no over shoot. Over shoot may cause a robot end effector to
penetrate the surface of its wo;'k environment which is not desirable. Thus, all of
the damping terms, (;, can be set to 1.0 to achieve critical damping. The undamped
natural frequency terms, w,,, are chosen such that the reference model will have
some desired step response. Typically, the reference model dynamics are chosen
such that they are “reasonable” for the plant to follow since the DMRAC algorithm
will try to force the plant to follow the model output. For the case of a PUMA 560
Manipulator, all of the w,, were initially set to 5.0. The model’s dynamic parameters
can be changed as needed if the robot is having problems tracking the model. The
model time constant should be greater than 5 times the sample frequency. The
number of remaining parameters for tuning is now 66.

Initially, the plant output derivative weights, a, are set to zero leaving 60
parameters. The a weights are used to remove high frequency components from the
plant control signal, um, and should only be used when needed as they will affect
the transient response as discussed in Section 2.6.

The feed-forward filter has 12 tuning parameters, six gains Ky, and six time
constants ;. A good first choice for the r; is approximately one-tenth the model

time constant. The 7; should be kept greather than about 5-10 times the sample



43

period. For our case, the initial value of the 7; was set to 207, = 20(4.5 ms) =~ 0.1 s.
The six DC filter gains can initially be set to 1.0. Increasing the filter gain will
typically improve the tracking performance.

The remaining 48 parameters are the diagonal components of Ty, and Tin:.
Initially, Tine can be set equal to Ty, leaving 24 parameters unspecified. A reasonable

initia.i guess for the remaining 24 parameters is Tine = Tpro = diag(1,1,...,1).

4.1.2 Tuning Process

A reasonable method of tuning a DMRA controller is to start the plant at
an equilibrium position and apply small step inputs!. Set the tuning parameters
to the initial values as discussed in the preceding section and check on the step
response. With the information on the effects of the tuning parameters on the
tracking response (which will be presented in Section 5.2), one can alternately run
a simulation (or control the actual plant) and then update the tuning parameter
values. This cycle is repeated until the desired performance is achieved. After a
reasonable performance is a.chievéd with the step inputs, the DMRAC should be
fine tuned using typical plant trajectories.

If the closed loop system is very sensitive to initial conditions, start with small
steps as described above, let the system reach steady-state, and then save all of
the DMRA controller state information (integral adaptation matrix, K;; reference
model state vector, T,,; and the filter state vector) to be used as initial conditions
for the next run. This will significantly cut down the adaptation time required for
the gains to reach their steady-state values.

In order to compare the tuning results, some criterion must be established.
For our case, the goal was to minimize the peak model following errors and keep

the error trajectory as close to zero as possible. Small errors were tolerable during

LIf step inputs drive the plant unstable, try holding the plant at an equilibrium. -



46

motion. It was also desired to achieve zero error in steady-state.

It is important to note that the DMRAC was tuned to minimize the model

following error, (y, — ym), not the over all input/output error, (y, — um).

4.1.3 DMRAC Tuning for a PUMA 560 Manipulator

The DMRAC algorithm was tuned by followed the suggestions given above.
A 10 degree step from the PUMA 560 stable equilibrium (arm down position? with
joint angles of { 0, 90, 90, 0, 0, 0 } degrees, see Figure 4.1) was commanded. With
the diagonal components of the weighting matrices set to 1.0, the reference model
parameters set to w, = 5.0 and ¢ = 1.0, the output derivative terms, a, set to 0.0,
and the feed-forward terms set to Ay = 1.0 and 7 = 0.1, the step response is as
shown in Figures 4.2 and 4.3 where the solid lines represent the plant output (joint
positions) and the dashed lines represent the model outputs. Note the smoothing
of the step input introduced by the reference model dynamics. As the plots show,
the step response with the initial tuning values is sluggish for Joints 1, 4, 5, and 6
with overshoot and oscillations. Joints 2 and 3 settle into their steady-state values

quickly but with a very large steady-state error. The process used to complete the

tuning was as follows:

1. Refine the tuning for the 10 degree step from the equilibrium position.

2. Using the refined parameter values, move the robot to the shutdown position,

see Figure 3.4, and save the DMRAC internal state values at that position for

use as initial conditions.

3. Refine the tuning for a 10 degree step from the shutdown position using the

initial conditions from Step 2.

ZNote: A PUMA 560 in its stable equilibrium does not hang straight down, Joints 2, 3, and 5
are at very slight angles from vertical due to an offset in Joint 3. This slight difference was ignored

when tuning without any problems.



4. Refine the tuning from typical min-jerk trajectories from the shutdown posi-

tion.

The final tuning parameter values after Step 4 are shown in Table 4.2. The
weighting matrix values for Joints 1, 2, and 3 differ from the weighting matrix values
for the last three joints by a factor of about 100 which reflects the mass/inertia
difference between the upper arm and the wrist. The weighting matrix values which
are multiplied by the “znm2” products are about a factor of 7 lower than the values
multiplying the “z,,;” products since the second state variable of each decoupled
reference model has a higher peak value in a transient (see Figure 4.6). The Joint
1, 2, and 3 reference models have an undamped natural frequency of 4.0 rad/sec
where the wrist model used 7.0 rad/sec which again reflected the inertia difference
between the upper arm and the wrist. The feed-forward filter values were set to
K, = 6.0 and 7 = 0.1 for all joints. The alpha values were increased from the initial
values of zero to damp out some high frequency oscillations.

A typical response to a minimum jerk trajectory using the pararneters' in Ta-
ble 4.2 is shown in Figures 4.4 and 4.5 where the solid lines are the plant outputs
and the dashed lines are the model outputs. The model following error with the
final tuning values was quite good. The peak errors for the plots in Figures 4.4

and 4.5 are shown in Table 4.3.

4.2 Individual Joint Evaluations

This section will investigate the DMRAC algorithm's ability to adapt to the
non-linear arm dynamics by first evaluating each joint individually and then looking
at the entire joint motion. For the individual joint evaluations, joint trajectories will
be selected which check each joint near its minimum and maximum inertias and/or
minimum and maximum gravity loading and at different speeds.

Note: The first couple of trajectory segments are normally used to move the



Figure 4.1: PUMA 560 in Stable Equilibrium

15 (a) J1 Actual and Desired Pos.

pos, deg

time, sec
100 {c) J3 Actual and Desired Pos.
s f
g oosi ;
o ! :
& g ’ ..... i -l
%0 ? H =
0 2 4 6 8
time, sec

951

I

100 (’lg_z 12;Adg at:\d Desued Pos.

48

Figure 4.2: Step response using Initial Tuning Parameter Values. (a)

Joint 1. (b) Joint 2. (c) Joint 3.



10 (a) J4 Actual and Desired Pos.
T :
8 ! : :
E
i ef
2 H
o
time, sec
10 (c_) J6 Actual and Desired Pos.
o :
s ; : ]
L
2 o
2
°o’

Table 4.2:

time, sec

pos, deg

4
’

(®) 15 Actual and Desired Pos.

Final Parameter Values

Toro “e.” 20 40 22 0.2 0.2 0.2
(diag “Tm | 140 20 140 35 100 22
component) 14 02 14 02 14 0.2
| “Um" | 140 160 110 14 14 14
Tint “e.” | 20 60 25 02 02 02
(diag “z," | 140 20 150 35 140 25
component) 4 02 14 02 14 02
___"u_m" 140 160 130 14 14 14

Joint 1 2 3 4 5 6
Model Wn 4 4 4 7 7 7

¢ 1 1 1 1 1 1

" Feed Ky 6 6 6 6 6 6
Forward T ol 01 01 01 01 0.1
alpha a 0.035 0.02 0.02 0.01 0.01 0.01

49

Figure 4.3: Step response using Initial Tuning Parameter Values. (a)
Joint 4. (b) Joint 5. (c) Joint 6.



20

100 (a) 1 ‘Actual and Desired Pos. 0 (b) J2 Actual and Desired Pos.
- -20 oo e :
§ 1§ opm |
g 40 h i 0 _\\ //
20 80 |-\ :
0 i * -100 i . "
0 5 10 15 20 0 5 10 15 20
time, sec time, sec
200 {c) J3 Actual and Desired Pos.
- |
8—
(2]
2
50 i L
0 5 10 15 20
time, sec

Figure 4.4: Response using Final Tuning Parameter Values. (a) Joint
1. (b) Joint 2. (c) Joint 3.

(b) J5 Actual and Desired Pos.

-]
i 1
2

tume, sec time, sec

100 {c) J6 Actual and Desired Pos.
.§° B _J
v
&
© — ;
0 5 10 15 20
tme, sec
1

Figure 4.5: Response using Final Tuning Parameter Values. (a) Joint
4. (b) Joint 5. (c) Joint 6. o



Model State Trajectory with a 10 Degree Step Input
20 T T T T T

16

14f-4

! : H X1 :

.
.. :
b L
.....

("
G
w

time, sec

Figure 4.8: Step Response of Reference Model with w, = 5.0 and ( =
1.0

Table 4.3: Peak Errors for Final Tuning Values

Joint | Peak Error (degrees)

-1.086
1.759
0.6431
0.1751
-0.373
-0.2529

O O] ] Q] D =




Table 4.4: Parameter Values for Joint Evaluation Runs

(S]]

(3]

Toro “e.” | 20 40 22 02 02 0.2
(diag “tm | 140 20 140 35 100 22
component) 14 02 14 02 14 0.2
“um”ﬁ_l-io 160 110 1.4 1.4 14
Tint “.,” | 20 60 25 0.2 02 0.2
(diag “rm” | 140 20 150 35 140 25
component) 14 02 14 02 14 02
“Up " ;LMO 160 130 14 14 14

Joint 1 2 3 4 5 6

Model Wn 4 4 4 7 7 7

¢ 1 1 1 1 1 1

Feed Ky 6 6 6 6 6 6
Forward T 01 01 01 01 0.1 0.1
alpha a 0.02 0.02 0.02 0.02 0.02 0.02

robot from the shutdown position to the “range of interest” and may produce large
joint tracking errors since the segment times are small. The trajectory segments
which are starred in the Tables are the ones of interest.

The tuning parameter values used for the joint evaluations are given in Ta-

ble 4.4.

4.2.1 Joint One Evaluation

The first joint was evaluated using two trajectories (see Tables 4.5 and 4.6).
These trajectories present joint one with its maximum inertia, Table 4.5, and its
minimum innertia, Table 4.6, at four different speeds. Figure 4.7 shows a top view
of the first trajectory where the numbered positions refer to knot point positions in
the Table. The second trajectory is simply a repeat of the first trajectory only with
the arm straight up rather then straight out.

The response of Joint 1 to the first trajectory is shown in Figure 4.8. In
Figure 4.8(a), the solid line shows the first joint actual position and the dashed

line (not visible) shows the desired position (model output, ym). Figure 4.8(c)



Table 4.5: Joint 1 Evaluation Trajectory (Maximum Innertia)

Knot Joint Positions (deg) Time
Point || 1 l 23 J4]5]6 || (sec) |
0 0 [45]180]0]45]0] - |
1 0 019 |0;01|0 2

2 0|09 10j0,0 1
3* 9 0 |9 (0|00 2
4* 0 0 90 0] 0|0 3
5* 90| 0 |9 (0] 0|0 4
6* 0] 0 ]9 0|00 5

7 0 0|9 |0[0]|O0 10

46

Figure 4.7: Trajectory Used to Evaluate Joint 1



54

shows the error between plant and model. As the figure shows, the maximum error
was about -1.8 degrees for the 2 second segment, 1.25 degrees for the 3 second
segment, 1.0 degrees for the 4 second segment, and about -0.8 degrees for the 5
second segment. This indicates that the DMRAC algorithm has a more difficult
time tracking faster trajectories which is expected. The joint torque is shown in
Figui'e- 4.8(b). The overall performance for this high innertia trajectory is quite
satisfactory. Figure 4.8(d) shows the lag introduced by the model. As was mentioned
before, the lag is being ignored since it is predictable and can be compensated for
by an appropriate predictive trajectory generator. We will instead concentrate on

the error between model and plant as was stated in our original DMRAC goal.

100 — @1 Posmon with Desired 2 (b) J1 Joint Torque
o\
g L\ N
0 §
g N /] Fo VA
-100 -10 i 5 H
0 5 10 15 20 0 5 10 15 20
time, sec time, sec

2 (C)IIY'D'!m

I/AYAN

pos, deg

pos, deg

0 5 10 15 20
time, sec time, sec

Figure 4.8: Joint 1 Evaluation, Maximum Inertia. (a) Position. (b)
Torque. (c) Model following error. (d) Model input and
Output.

The response of Joint 1 to the second trajectory is shown in Figure 4.9. This
trajectory presents Joint 1 with its minimum inertia. Comparison of the error plot,

Figure 4.9(c), to the previos case, Figure 4.8(c), shows that the response is about



Table 4.6: Joint 1 Evaluation Trajectory (Minimum Innertia)

Knot Joint Positions (deg) Time
| Point [ 1 [ 2] 3 [4]5 [6] (sec)
0 0 [-45]180[0[45]0] -

1 0|0 |9 (ojOofOo} 2
2 0|0 ]9%]0j0j0 1
3* 90 | 0 |9 |0] 0|0 2
4* 0 [0 90|00 3
5* 90 0 [ 90 [0)0 0O 4
6* 0 {09 (0j0]0 b]
7 0|]0J]9I(0j0]O0 10

the same where this case has slightly better tracking. The interesting result is that
the joint torque signal, Figure 4.8b, contains a high frequency component with an

amplitude of about +0.2Nm which was not present in the previous case.

4.2.2 Joint Two Evaluation

The second joint was evaluated using three trajectories (see Tables 4.7, 4.8,
and 4.9). These trajectories present Joint 2 with its maximum gravity loading, Ta-
ble 4.7, its minimum gravity loading, Table 4.8, and a coupling effect Table 4.9, at
four different speeds. The first two trajectories allow Joint 2 to see its maximum
innertia. Figures 4.10 and 4.12 show a side view of the first and second trajecto-
ries respectively, where the numbered positions refer to knot points in the Tables.
Figure 4.14 shows a view of the third trajectory.

The response of Joint 2 to the first trajectory is shown in Figure 4.11. As the
error plot shows, Figure 4.11(c), the peak error for the 2 second trajectory segment
was around 2.8 degrees. Joint 2 did not recover from this error until about 11
seconds into the trajectory. The 4 and 5 second trajectory segments both had peak
errors less than 1.0 degree. The joint torque signal is shown in Figure 4.11(b) and

indicates some ringing during the fast portions of the trajectory (5 < ¢ < 10).



56

100 (a) J1 Position with Desired 10 {®) J1 Joint Torque
ob A\ | |
: €
[ ] H
; $ oY
d N/ ]E \/\/
-100 -10
0 s 10 15 20 0 5 10 15 20
time, sec ) time, sec
2 (OPA] Yp -ym
2 i
0 5 10 15 20

time, sec

Figure 4.9: Joint 1 Evaluation, Minimum Inertia. (a) Position. (b)
Torque. (¢) Model following error.

Table 4.7: Joint 2 Evaluation Trajectory (Maximum Gravity Load)

Knot || Joint Positions (deg) || Time
Point || 1| 2 3 4] 5 l 6 || (sec)
0 fo]-45[180]0[45]0] -

1 0l 0 {9 |0} 0|0 2
2 0l 0|9 |0|j07)0 3
3 0/209 0|10 }0 2
4> 0| 0 |9 |0[0]j0 3
5* 0/-201 90 |0] 010 4
6™ o{ 0 |9 }|0{0]0 5
7 0] 0 ]9 [0|O (O} 10




57

Figure 4.10: Trajectory Used to Evaluate Joint 2, Maximum Gravity
Loading

40 — 2 J2 Position with Desired 0 (b) 12 Joint Torque
x) .
20

g o z
£ aff -

40 = 60+ AvAv—v

0 — 20

0 10 20 30 0 10 20 30
time, sec time, sec

AN I [3-
: :
% 10 m 0

time, sec

Figure 4.11: Joint 2 Evaluation, Maximum Gravity Loading. (a) Posi-
tion. (b) Torque. (c) Model following error.



58

Table 4.8: Joint 2 Evaluation Trajectory (Minimum Gravity Load)

Knot Joint Positions (deg) Time
Point | 1] 2 | 3 [4] 5 |6] (sec) |
0 0| -45 |180(0]45]|0 -

1 0/-90 ]9 (0[0}0 2
2 0f-90 |9 [0]0]0 3
3* J0[-70 ]9 {0[0]|0O 2
4* 0| -9 |9 [0j0]0 3
5* ||10]-110] 9 |[0]0]0O 4
6 |0]-90 19 |0]0]0 5
7 0[-90 ({9 |0| 0|0 10

Figure 4.12: Trajectory Used to Evaluate Joint 2, Minimum Gravity
Loading



o9

The response of Joint 2 to the second trajectory is shown in Figure 4.13.
The error plot in Figure 4.13(c) shows the improved tracking performance over the
previous case. For the 2 second trajectory segment, the peak error was about 0.6
degrees. The error remains within + 0.3 degrees for the 3, 4, and 5 second trajectory
segments. The joint torque signal, Figure 4.13(b) is just beginning to show a small

amount of high frequency oscillation.

40 (a) J2 Actual and Desired Pos. 40 {b) J2 Joint Torque
\ »
_w ..... 2ee
R Lo e B A1
-100 2\ ; =
120 H 40 H
0 10 20 30 0 10 20 30
time, sec time, sec
1 (c) nyp:yzg

E?.

time, sec

Figure 4.13: Joint 2 Evaluation, Minimum Gravity Loading. (a) Posi-
tion. (b) Torque. (c¢) Model following error.

The final trajectory subjects Joint2 to a centrifugal force from Joint 1. The
swinging motion of Joint1 is used to apply a centrifugal torque to Joint 2. Figure 4.14
shows the trajectory. The response of Joint 2 to the coupling trajectory is shown
in Figure 4.15. The peak tracking errors for the 2, 3, 4, and 5 second trajectory
segments all remain within £ 0.34 degrees. The Joint 2 link torque signal is well
behaved, Figure 4.15(b). The DMRAC does not seem to have trouble adapting for

the centrifugal torque.



60

Table 4.9: Joint 2 Evaluation Trajectory (Coupling Effect) b
Knot Joint Positions (deg) || Time
Point | ___l__] 3 (4|56 " (sec)
0 JoJ-45]180]0[45]0] -
1 0 [-45]-45]0( 0 |0 2
2 0 [-45{-45]0({ 0|0 2
3* 30 {45 -45|0] 0 O )] 2 I
4* 0 [45]-45(0(0 {0 3
5* -30|-45(-45(0] 0 |0 4
6* 0 [-45]-45]0[ 0|0 5
7 0 |-45]|-4510{ 010 10

(a) ()

Figure 4.14: Trajectory Used to Evaluate Joint 2, Coupling Effect



61

0.4 —(2) 2yp-ym 0 (b) J2 Joint Torque
, -10p 4
2L s I 7 SOURINY A VNI, -

02 4 : E
g : zZ 2 ;
e 0'!7“\/ : 8
¢ PN e

N Vo : ® L __

04 i .50 - :

5 10 15 20 0 5 10 15 20
time, sec time, sec
40 (O] Ppsition.

o
8 :
o’ 0
g : \

= XY

40 !

0 5 10 15 20
time, sec

Figure 4.15: Joint 2 Evaluation, Coupling Effect. (a) Model following
Error. (b) Torque. (c) Joint 1 Position.

4.2.3 Joint Three Evaluation

The third joint was evaluated using three trajectories similar to the ones used
for Joint 2. (see Tables 4.10, 4.11, and 4.12). These trajectories present Joint 3 with
its maximum gravity loading, Table 4.10, its minimum gravity loading, Table 4.11,
and a coupling effect Table 4.12, at four different speeds. Figures 4.16 and 4.18 show
a side view of the first and second trajectories respectively, where the numbered
positions refer to knot points in the Tables. Figure 4.20 shows a view of the third
trajectory.

The response of Joint 3 to the first trajectory is shown in Figure 4.17. As
Figure 4.17(c) shows, the error is bounded by £ 0.4 for all four test trajectory
segments.

‘The response of Joint 3 to the second trajectory is shown in Figure 4.19. The
error, Figure 4.19(c) remains bounded by + 0.3 over the 2, 3, 4, and 5 second



Table 4.10: Joint 3 Evaluation Trajectory (Maximum Gravity Load)

Knot Joint Positions (deg) Time
Point { 1] 2 3 |4 5 |6} (sec)
0 0]-45]180{0}45]|0 -

1 0] 0 |9 |0]0]0 3
2 0 0|9 [0[0]0 2
3 J[of o J1w0fjofo o] 2
4* 0] 0 {9 (0{0]0 3
5% 0 0}70}0]01|0 4
6* 0| 09 {0,0/{0 5
7 0 09 (0;01{0 10

5
4.6

Figure 4.16: Trajectory Used to Evaluate Joint 3, Maximum Gravity

Loading



200 (a) J3 Actual and Desired Pos.

torque, Nm

£ 100 J\\/
50 ; ; ;
0 5 10 15
ime, scc
15 (c)J3 Yp - ym %

pos, deg

time, sec

15

20

63

(b) J3 Joifu Torqu9

Figure 4.17: Joint 3 Evaluation, Maximum Gravity Loading. (a) Posi-
tion. (b) Torque. (c) Model Following Error

Table 4.11: Joint 3 Evaluation Trajectory (Minimum Gravity Load)

Knot || Joint Positions (deg) || Time
Point [[1] 2 | 3 [4] 5 |6 (sec)
0 0]-45|180({0|450 -

1 01 0 0 [0l 0|0 3
2 0fj 0 0 [0j0]0 2
3* 0 0210|010 2
4 0l O 0 |0] 010 3
5* 0| 0]-21]0[0j0 4
6* 0| 0 0 |0]J0]O0 5
7 0( 0 0 {(0j0}0 10




64

46 5

Figure 4.18: Trajectory Used to Evaluate Joint 3, Minimum Gravity
Loading

trajectory segments. The large error signal for 0 < ¢ < 5 is caused by the fast
trajectory of Joint 3 to position the arm for this test.

The response of Joint 3 to the coupling trajectory is shown in Figure 4.21.
The error for the coupling evaluation, Figure 4.21(a) remains bounded by + 0.05
degrees for the four trajectory segments of interest. The large error for 0 <t <35 is

caused by the fast trajectory of Joint 3 used to position the robot for this evaluation

Table 4.12: Joint 3 Evaluation Trajectory (Coupling)

Knot Joint Positions (deg) Time
Point [ 1 [ 2 [ 3 [4] 5 |6] (sec)
0 0 |45 |180(0(45]0 -

1 00| 0 J0j0]jO0 3
2 0|0 jfo0jojof}o 2
3* 30/ 0] 0 |0j0}0O 2
4 00| 0}0]0]O0 3
5 [[-30] 0] o jo[0]O 4
6™ ojo0] o0 |0]0]0 5
T 0l 0] 0 (f0j0]0}) 10




200 (a) J3 gAcmal a.pd Dcsu'cd Pos. 10 gb) I3 Joi{n Tomuc!
150‘:\ : : -
: : £
& 100 \ : z
v ' i 8
; &
g 50 & : ! E
0 L N :
sol i ; H 30
0 5 10 15 20 0 5 10 15 20
time, sec time, sec
3 . {c)J3 yp-ym__

pos, deg

time, sec

Figure 4.19: Joint 3 Evaluation, Minimum Gravity Loading. (a) Posi-
tion. (b) Torque. (c) Model Following Error

4,6

~F

(a) ()

Figure 4.20: Trajectory Used to Evaluate Joint 3, Coupling Effect



66

run. Figure 4.21(d) shows the position of Jointl for reference.

3 —(a) J3yp-ym 10 (b) I3 Joint Torque
,é' z i : :
R L 0 R St S
g / \ g {
O ' T 20k ;
1 P s 30 ; ;
Q 5 10 15 20 0 5 10 15 20
time, sec time, sec
40 ; (c)J1 Posmon 200 (d) J3 Pgosition. ;
g
o 100f- o -
AN
50 K } -
0 5 10 15 20
time, sec time, sec

Figure 4.21: Joint 3 Evaluation, Coupling. (a) Model following error.
(b) Torque. (c) Joint 1 Position. (d) Joint 3 Position

4.2.4 Joint Four Evaluation

The forth joint was evaluated using two trajectories (see Tables 4.13 and 4.14).
These trajectories present Joint 4 with its maximum inertia, Table 4.13, and its
minimum inertia, Table 4.14, at four different speeds. Figures 4.22 and 4.24 show a
view of the first and second trajectories respectively, where the numbered positions
refer to knot points in the Tables.

The response of Joint 4 to the first trajectory is shown in Figure 4.23. Joint
4 tracked the 2 second trajectory segment with a peak error of -1.0 degree, the 3
second segment with a peak error of 0.7 degrees, the 4 second segment with a peak

error of 0.5 degrees, and the final 5 second trajectory segment with a peak error of

-0.4 degrees.

- I



Table 4.13: Joint 4 Evaluation Trajectory (Maximum Inertia)

Knot Joint Positions (deg) Time
Point [I] 2 3 [ 4 ]5/[6] (sec)
0 0|-45|180| 0 [45]0 -

1 0l 0 |180] 0 [90]0 3
2 0 0 |18 0 |9 |0 2
3* ol O |180| 4590 |0 2
4* o 0 [180| 0 9]0 3
5 0 0 |180]|-45]90|0 4
6 fof 0 [180] 0 [900 5
7 0| 0 |180( 0 {9 0} 10

.
= | — 46
—
3
pd

67

Figure 4.22: Trajectory Used to Evaluate Joint 4, Maximum Inertia



b) J4 Lc_mhl Torque

50 (a)J4 :Actua.l apd Desu':d Pos. 10
H N H 5 i

£
z

g 0
£

-5

.10k
0

Figure 4.23: Joint 4 Evaluation, Maximum Inertia.
Torque. (¢) Model following error.

10 15 20

time, sec

time, sec

(a) Position. (b)

Table 4.14: Joint 4 Evaluation Trajectory (Minimum Inertia)

Knot Joint Positions (deg) | Time
(Point 1] 2 | 3 | 4 ]5]6] (sec)
0 JJo[-45[180] 0 [45]0] -

1 0Of 0 {1801 0 { O |0 3
2 0 0 |180] O 0|0 2
3" 0 0 |180} 451010 2
4* 0{ 0 |1S0}, 0 |00 3
5 o]0 10| 45]0]0] 4
6 o]0 [0] 0 0]0] 5
7 0] 0 [150] 0 [0 [0] 10




69

5

3//\

|

Figure 4.24: Trajectory Used to Evaluate Joint 4, Minimum Inertia

The response of Joint 4 to the second trajectory is shown in Figure 4.25. The
tracking performance, Figure 4.25(c) for the second case is nearly identical to that
of the previous case, Figure 4.23(c). The peak errors for the 2, 3, 4, and 5 second

trajectory segments were approximately -1.0, 0.7, 0.5, and -0.4 degrees, respectively.

4.2.5 Joint Five Evaluation

The fifth joint was evaluated using two trajectories (see Tables 4.15 and 4.16).
These trajectories presented Joint 5 with its minimum gravity loading, Table 4.13.
and its maximum gravity loading, Table 4.14, at four different speeds. Figures 4.22
and 4.24 show a view of the first and second trajectories, respectively, where the
numbered positions refer to knot points in the Tables.

The response of Joint 5 to the first trajectory is shown in Figure 4.27. As the
error plot in Figure 4.27(c) shows, Joint 5 tracks the 2, 3, 4, and 5 second trajectory
segments with a peak error of -1.1, 0.7, 0.3, and -0.4 degrees, respectively.

. The response of Joint 5 to the second trajectory is shown in Figure 4.29. For



10 (b) J4 Joip! Torqug
Fig .
< ; 0 : /\
2 £ \VAYS
= sl
.10 i H H
0 5 10 15 20
time, sec time, sec
1 . {c)J4 Yp - ym :
7]
]
o
z

5 10 15 20

time, sec

Figure 4.25: Joint 4 Evaluation, Minimum Inertia. (a) Position. (b)
Torque. (c) Model following error.

Table 4.15: Joint 5 Evaluation Trajectory (Minimum Gravity Loading)

Knot Joint Positions (deg) Time
Point [ 1] 2] 3 [4] 5 [6] (sec)
0 045|180 (0| 45 |0 -

1 0| 0 |180j0} O [O 3
2 0| 0 {180f{0| O |O 2
3~ JJol o J1s0jo] 0 o] 2
4 JJo] 0o [180/0[45 |0 3
5* o 0 |180(0f O jO 4
6 (0] 0 | 1800|450 5
7 0] 0 j180|0f O O} 10




4,6

Figure 4.26: Trajectory Used to Evaluate Joint 5, Minimum Gravity
Loading

50 (2) J5 Actual and Desired Pos. 10 gb) I35 Joint Torque_ _
w OF
-8
.50 i H re -10 i i i
0 5 10 15 20 0 5 10 15 20
time, sec time, sec

1 e Syp-ym

Figure 4.27: Joint 5 Evaluation, Minimum Gravity Loading. (a) Posi-
tion. (b) Torque. (c) Model following error.



[R]

Table 4.16: Joint 5 Evaluation Trajectory (Maximum Gravity Loading)

Knot || Joint Positions (deg) || Time
Point 1] 2 [ 3 [4] 5 | 6] (sec)
0 Jo[-45[9%]J0]45]0] -
1 0| 0 |90 0 O 3
2 0} 019 0| 00 2
3* 0] 0 |9 0| 0 |O 2
4* 10| 0 1901045 |0 3
5* JJ0] 0 |9 ]|0| 0 |O 4
6 0] 0 [|90]0]-45]0 5
7 0] 0 {9]0] 0 O] 10

5
46

Figure 4.28: Trajectory Used to Evaluate Joint 5, Maximum Gravity

Loading

/|



73

the second trajectory, the peak error increased slightly over those of the first case.
The peak errors for the four trajectory segments were -1.2, 0.8, 0.6, and -0.45 degrees

for the 2, 3, 4, and 5 second segments, respectively.

50 (a) J5 Actual and Desired Pos. 10 (b) JS Joint Torque
IS .
: £
S manwrel MAVVAS
: - 5 [— /\
: LR AV B
.50 H r .10 i
5 10 15 20 0 5 10 15 20
time, sec time, sec
1 (€)J5 Yp - ym
(] 2
g o
g os
-1
15 i H
0 5 10 15 20

time, sec

Figure 4.29: Joint 5 Evaluation, Maximum Gravity Loading. (a) Posi-
tion. (b) Torque. (c) Model following error.

4.2.6 Joint Six Evaluation

The sixth joint was evaluated using the trajectory in Table 4.17. Figure 4.30
shows a view of the trajectory where the numbered positions refer to knot points in
the Tables.

The response of Joint 6 to the trajectory is shown in Figure 4.31. The peak
tracking errors for the 2, 3, 4, and 5 second segments were -1.0, 0.7, 0.5, and -0.4

degrees respectively.



Table 4.17: Joint 6 Evaluation Trajectory

Knot ||  Joint Positions (deg) Time
Point "1| 2 l 3 ]4 5[ 6 !sec)
0 [Jo[-45[180[0[45] 0 [ -
1 o] o |10jojo| 0] 3
2 (0] 0 |180(0|0] O 2
3* 10} 0 |180j0j0 | O 2
4* 0 0 [180|0] O | 45 3
5 o 0 [180(0| 0| O 4
6* [|0] 0 |180{0]| O |-45 5
7 0| 0 [180|j0} 0| O 10
L
/
3 / \ s
46

Figure 4.30: Trajectory Used to Evaluate Joint 6



100 (a) J6 Actual and Desired Pos. e
e A 2
& o - g
-50 i .15
0 5 10 15 20 0 5 10 15 20
time, sec time, sec
2 (c)J6 yp - ym
l+d
¥, AVAN
g N
-1 ;
2 i
0 5 10 15 20

time, sec

Figure 4.31: Joint 6 Evaluation. (a) Position. (b) Torque. (c) Model
follwoing error

4.3 Summary

In this chapter we discussed and illustrated the tuning of a DMRAC algorithm
and showed its application to a PUMA 560 Manipulator. Next, we ran some simula-
tions to evaluate each of the six PUMA joints individually. The DMRAC controlled
joints performed quite well.

Table 4.18 shows a summary of the peak tracking errors for all of the various
joint evaluation runs. As the table shows, the tracking performance was quite good.
The worst case tracking errors occurred when the algorithm was adapting to the

changing gravity vector.



Table 4.18: Joint Evaluations Summary, Simulation

Peak Errors in Degrees

Joint || 2-3 34 4-5 5-6 || Trajectory (see Table)
[ (2 sec) | (3 sec) | (4 sec) | (5 sec)

T || -1.90 | 125 | 108 | -0.83 || 4.5 (Maximum Inertia)
1 -1.55 1.14 0.91 -0.73 || 4.6 (Minimum Inertia)
2 2.83 -1.22 | -0.89 | 0.39 || 4.7 (Maximum Gravity Load)
2 0.65 | -0.38 | -0.23 | 0.19 | 4.8 (Minimum Gravity Load)
2 034 | 0.26 | 025 | -0.20 || 4.8 (Coupling Effect)
3 -0.40 | 0.33 0.23 | -0.17 || 4.10 (Maximum Gravity Load)
3 || -032 | 0.23 0.16 | -0.14 |f 4.11 (Minimum Gravity Load)
3 0.08 | 0.04 | 0.03 | -0.02 || 4.12 (Coupling Effect)
4 || 103 | 072 | 051 | -0.40 || 4.13 (Maximum Inertia)
4 -1.04 | 0.72 0.51 -0.40 || 4.14 (Minimum Inertia)
5 -1.05 0.73 0.51 -0.42 || 4.15 (Minimum Gravity Load)
5 -1.18 | 0.87 0.53 | -0.43 || 4.16 (Maximum Gravity Load)
6 -1.04 0.74 0.50 -0.42 | 4.17

6



CHAPTER 5§

Simulation Results (Trajectory Tracking Cases and Parameter Effects)

This chapter will present the results of the Matlab simulations of Direct Model
Reference Adaptive Control of a six link PUMA 560 Manipulator, fully-centralized.
First the arm will be commanded to track some six joint trajectories. Then, after
the general performace characteristics are determined, the effects of changing the
tuning parameters will be investigated. All results will be displayed with the bias

term, qui., removed (Section 2.7).

5.1 Tracking of 6 Joint Trajectories

This section will investigate the ability of the DMRAC controlled PUMA 560
to track some six joint trajectories. The tuning parameter values used for these runs

are shown in Table 5.1.

5.1.1 Tracking Trajectory #1

The first trajectory is shown in Table 5.2 and is illustrated by Figure 5.1 where
the numbers correspond to the knot points in the table. The arm first moves to a
straight up position, curls up, and then moves back to the safe position.

The model following error plots are shown in Figure 5.2 and the peak errors
for each of the joints are summarized in Table 5.3. Joints 1 and 2 had the worst
performance with peak errors of -1.10 degrees and 1.76 degrees. Joints 3 through
6 had error trajectories within £ 1.0 degree. The torque signals for the first four

joints are shown in Figure 5.3.

17



78

Table 5.1: Parameter Values for 6 Joint Trajectory Tracking Runs

Tpro “e, 20 40 22 02 02 0.2
(diag “zm” | 140 20 140 35 100 22
component) 14 02 14 02 14 0.2
u “up,” | 140 160 110 14 14 14
Tint “ex 20 60 25 02 02 0.2
(diag “zm” | 140 20 150 35 140 25
component) 14 02 14 02 14 0.2
L “un” | 140 160 130 14 14 14

- Joint 1 2 3 4 5 6

Model Wh 4 4 4 7 7 7

¢ T 1 1 1 1 1

Feed K, 6 6 6 6 6 6
Forward T 01 01 01 01 01 0.1
alpha a |0.035 002 0.02 001 0.01 0.01

Table 5.2: First Six Joint Tracking Test Trajectory

Knot Joint Positions (deg) Time
Point | 1 | 2 | 3 [4] 5] 6 || (sec)
0 0 |-45]|180| 0 | 45|90 " -
1* |90[-90] 90 |45]| 0 {45] 6
2* 0] 0180|099/ 7
3* 045|180 0[45[9 ] 5

Table 5.3: Peak Errors for First Trajectory
Joint || Peak Error (deg)

—

1 -1.0889

1.7596

0.6527

0.1728

-0.3613

| | I

0.2347




Figure 5.1: First Six Joint Tracking Test Trajectory

(a) Joints 1-6 yp - ym

pos, deg

-1.5 i
0 2 4 6 g 10 12 14 16 18 20

time, sec

F.igure 5.2: Model Following Errors for First Trajectory

¢

79



4 !(a) J1 Ioi{u Torqu=: 20 _{b) J2 Jgigu Torqu:Y
E E .
z z
g g -20
0 5 10 15 20
time, sec time, sec
5 s'c) I3 Ioipt Tmue 3 d)J4 Iqi_gu Torqu?
[ 13
z. z 1 :
g s |/
g‘ E‘ 0 SUURUIPIPRIE A0, N '
2 2 : / :
! V2
2 H H H
0 5 10 15 20
time, sec time, sec

Figure 5.3: Torque Signals for Joints 1-4 for First Trajectory. (a) Joint
1. (b) Joint 2. (¢) Joint 3. (d) Joint 4.

Table 5.4: Second Six Joint Tracking Test Trajectory

Knot Joint Positions (deg) Time
 Point || 1 | 2 | 3_‘1 $4]5]6 (sec)

0 0 |-45[180| 0 | 45|90
1* 45|45 45190 0] 0
2* 0 |-45]180| 0 |45 90

||

5.1.2 Tracking Trajectory #2

The second six joint tracking trajectory is shown in Table 5.4 and is illustrated
in Figure 5.4. The model following error trajectories are shown in Figure 5.5. The
peak errors are listed in Table 5.5. Joints 2 and 3 have the worst tracking perfor-

mance with peak errors of 1.8 and 1.6 degrees. Joints 1, 4, 5, and 6 all have error

trajectories within + 1.0 degree.



il A

t

[ AR

PN}

Figure 5.4: Second Six Joint Tracking Test Trajectory

(a) Joints 1-6yp - ym

pos, deg

1 o . .
135 2 4 6 8 10 12
lime, sec

Figure 5.5: Model Following Errors for Second Trajectory

81



Table 5.5: Peak Errors for Second Trajectory

Table 5.6: Third Six Joint Tracking Test Trajectory

[ Joint || Peak Error (deg) |

1

-0.7793

1.3370

1.5970

0.6837

0.327 6

ol o] cof o

-0.7096

Knot Joint Positions (deg) Time
(Point [ 1127 3 [4]5] 6 | (sec)
0 [[0[-45[180]0[45]90] -

1 01]-90/180/90|90| O 2
2 90 | -90 | 130 | 90 | 90 | 90 2
3* |l90] 0 | 90 |0 [9|9 | 10
4* 190 0 | 90 | 0 {9090 1
5% |{90]-90|180|90[90 {9 || 10
6 0|-90{180]|90(90 | O 2
7 0| 45[180] 0 [45] 90 2

5.1.3 Tracking Trajectory #3

The third six joint tracking trajectory is shown in Table 5.6 and is illustrated

in Figure 5.6. This trajectory was used to simulate gross and fine robot motion.

Gross motion is fast motion through free space where speed is required but tight

tracking errors are not needed. Fine motion is slow motion where tracking errors

should be minimized. For the third trajectory, the arm moves up using a 2.0 second

trajectory and twists 90 degrees at Joint 1 again using a 2.0 second trajectory. These

fast trajectories were used to simulate gross motion. Once into position, the arm

slowly straightens out with a 10 second trajectory, simulating fine motion, and holds

the extended position for 1.0 second. The procedure is then repeated in reverse to

get the arm back to the shutdown position.

The actual joint positions and desired positions (reference model outputs) are

o

g
iE



"L

e E‘;“gv ,,';;?gj‘!g R

Comer 1y
I d

fUA,

T

83

Figure 5.6: Third Six Joint Tracking Test Trajectory

shown in Figures 5.7 and 5.8. The model following errors are shown in Figures 5.9
and 5.10. For the fine motion trajectory segments, all of the model following errors
were < +0.38 degrees. The peak errors for the gross motion segments ranged from
0.4 degrees for Joint 3 to 2.5 degrees for Joint 1.

Notice that Joint 6 went unstable and saturated at its limits for a small time
before and after the fine motion segments, Figure 5.10(d). This oscillation can be
seen in the error plot for Joint 6, Figure 5.10(c). Even though Joint 6 went unstable

for a time, the rest of the joints were not greatly affected.

5.2 Effects of DMRAC Parameter Changes

This section will examine the effects of changing the various tuning parameters
of the DMRAC algorithm. In order to be able to compare the effects of the parameter
changes, we will look at the the model following error, (y, — ym). The bias term,
Qbias, Will be subtracted out when displaying the plots so the error term will approach

zero for easy comparison. Also, we will only present results for Joint 2 or 3. These



34

100 (a) J1 Ac}ual and Desired Pos. 0 ~—(1J2 Actual and Desued Pos.
§ o ] g 0 \
N tal—f I\

o A

0 i ke .100 i i

0 10 20 30 0 10 20 30
time, sec time, sec

200 (c) J3 Actual and Desired Pos.

10 20 30
time, sec

Figure 5.7: Actual and Desired (y.) Joints 1-3 Positions for Third
Case. (a) Joint 1. (b) Joint 2. (c) Joint 3.

100 (a) J4 Actual and Desired Pos. 100 (b) JS Actual and Desired Pos.

v m_[ ] L
g 60}

40

0 10 20 30
time, sec

ol
3
2

Figure 5.8: Actual and Desired (ym) Joints 4-6 Positions for Third
Case. (a) Joint 4. (b) Joint 5. (c) Joint 6. o

t-_-‘ I‘ ]

AR

——

N |

PR -—w



4 (!a) Il yp-ym
2_. e -
i T/
,2 ...
4 ; i
0 10 20 30
time, sec

0.4 (€J3yp-ym

Figure 5.9: Model Following Error for Joints 1-3 for Third Case.

15 (P)JZyp-yqt
0.5 A
0 /\A A
Yadiiing
5/
& 10 20 30

Joint 1. (b) Joint 2. (c) Joint 3.

2 (?)14 Yp-ym
o
-4
2 -
0 10 20 30
time, sec
2 (;:) J6yp-ym
0
]
o
g
2 H
0 10 20 30

time, sec

torque, Nm

05

() IS yp - ym

&

10 20 30
time, sec

{d) J6 Joint Torque

0 10 20 30

Lme, sec

Figure 5.10: Modél Following Error for Joints 4-6 for Third Case. (a)
Joint 4. (b) Joint 5. (c) Joint 6. (d) Joint 6 Torque



Table 5.7: Base Parameter Values for Parameter Change Runs

Tpro %e.” | 20 40 22 02 02 02
(diag “zm” | 140 20 140 35 100 22
component) 14 02 14 02 14 0.2

“un" | 140 160 110 14 14 14
Tint “e™ ] 20 60 25 02 02 0.2
(diag a7 | 140 20 150 35 140 25

component) 14 02 14 02 14 0.2
“Uum " | 140 160 130 14 14 14

Joint 1T 2 3 4 5 6

Model wy 4 4 4 7 7 7

¢ 1 1 1 1 1 1

Feed Ky 6 6 6 6 6 6
Forward T 01 01 01 0.1 0.1 0.1
alpha o |0.035 0.02 0.02 0.01 0.01 0.01

two joints usually have the worst performance out of the six. The initial values for
the tuning parameters, which will serve as a base for the comparisons, are shown in
Table 5.7. The trajectory was a 10 degree step input from the shutdown position,
Figure 3.4, at t=2.0 seconds. Thus the robot was commanded to move from position
{0, —45,180,0,45,90} to {10, —35. 190, 10. 53, 100} in zero time. This trajectory will
show the importance of the reference model when dealing with set point control (step
inputs). The reference model provides a controlled, predictable smoothing of the

step input such that the robot can follow the reference model output.

5.2.1 Base Case for Comparison

The response to the base case for comparisons is shown in Figure 5.11. The
tuning parameters are listed in Table 5.7 which include the feed-forward filter in
the plant and model. The initial error for the first 0.5 seconds results from the fact

that the start up values for the adaptation gains were not exact, and for the first



87

interval, there is no control® (the torques are zero). As the figure shows, after about

3 seconds, the error has settled back to zero.

Joint 2 error, Base Case
0.4 T T ' !

0.2

emor, deg

-1

time, sec

Figure 5.11: Base Case for Parameter Change Comparisons

5.2.2 Adaptive Weighting Matrices, T,,, and Ti,

The weighting matrices Ty, and Tin affect the adaptive gains through (2.68)
and (2.69). If the weighting matrices are taken to be diagonal, then by multiplying
out (2.68) and (2.69), we find that the weighting matrices multiply six different
products to form K; and Kp as shown in Table 5.8. The effects of the weights; on
the six products will be investigated for Joint 2.

The €2 product term for Joint 2 is weighted by the Tpro(2.2) proportional weight
and the Tinyz,2) integral weight. The effects of changing Tpro(2.2) are shown in Fig-

ure 5.12 where the dotted line is the base case with Tpro(2,2) = 40, the solid line

1This is a factor in the implementation of the controller on the CIRSSE Testbed and was
duplicated in the simulation.



88

Table 5.8: Effects of Weighting Matrices on Adaptive Gains

Adaptive | Product | Portion of

Gain Term | Weighting Matrix

33 diagl--G(TPfo)

['\’P €.Tm dz'ag-,-_lg(Tp,o)

€:Um diag19-24(Tpro)

63 diag —6(Lint)

I\.’j €:Tm diagf-w(T.'m)

€:lim diag19-24(TLine)

*Where diag;_;(X) refers to the i** through the j*h diagonal components of X.

is with Tpro(22) = 4000, and the dashed line (on top of the dotted line) is with
Toro(22) = 0.4. As the plot shows, decreasing the weight by a factor of 100 has
little effect but increasing it by a factor of 100 increases the error. The effects of
changing Tine(2.2) are shown in Figure 5.13 where the dotted line is the base case with
Tine(2,2) = 60, the solid line is with Tiny2.2) = 6000, and the dashed line (on top of the
dotted line) is with Tiy2.2) = 0.6. As with the previous case, decreasing the weight
has little effect, but increasing the weight increases the error signal. It was discov-
ered that the diag;-¢(Tpro) and diag;_s(Tin) components were not as effective as the
other terms in the weighting matrices for fine tuning the performance of the DM-
RAC because the e? product which they multiply is small when the plant is tracking
the model with a small error. The diagy_¢(Tpro) and diagy—s(Tin,) components have
more effect when there are large errors.

The e,zn product term for Joint 2 is multiplied by the diage—10(Tpr,) propor-
tional weighting terms and the diage_10(Tine) integral weighting terms. The effects
of changing diage—10(Tpro) are shown in Figure 5.14 where the dotted line is the
base case with diage_10(Tpro) = {140,35}, the solid line is with diage_10(Tpro) =
{1400,350}, and the dashed line is with diage—10(Tpro) = {14,3.5}. Decreasing
diage_10(Tpro) resulted in a larger error signal with more oscillations while increas-

ing diagg—10(Tpro) resulted in a slightly larger error and a longer decay time. The



J2 Error (Solid: 4000, Dashed: .4, Dotied: 40)
0.6 T - T T

0.4

0.2

eror, deg

0.4

0.6

time, sec

Figure 5.12: Effects of T,.,z22 on Joint 2. (dotted, under dashed)
Tpro(z,z) = 40, (SOlid) Tp,-o(z'g) = 4000, (dashed) Tpro(g'z) = 0.4

J2 Error (Solid: 6000, Dashed: 0.6, Dotted: 60)
0.4 T H Y H Ll H

..........

0.2

Y IR SO [ S S S B §

ervor, deg

0.4

1 1 2 3 4 5 6 7 8

time, sec

Figure 5.13: Effects of Tin22 on Joint 2. (dotted, under dashed)
) Tp,.o(gvg) = 60, (SO“d) Tp,o(g.g) = 6000, (dashed) Tpro(g'j) =0.6



90

effects of changing diago—10(Tint) are shown in Figure 5.15 where the dotted line is
the base case with diage_10(Tin:) = {150, 35}, the solid line is with diagg-10(Tint) =
{1500,350}, and the dashed line is with diags_10(Tine) = {15,3.5}. Increasing
diags_10(Tin:) resulted in a larger peak error with more oscillations but a faster
decay rate. Decreasing diags-10(Tin) resulted in a slightly smaller peak error and a
longéf decay rate.

12 Error (Solid: 1400,350, Dashed: 14,3.5, Dotted: 140,35)
0.3 T - r
A ; :

H : ;

0.4 i : :' :; JOUS SO

0.2

J.T-:.
ofi—

0.2

error, deg

0.4

06 -

08 f ; : - : o

1.2 i i i i i
0 1 2 3 4 5 6 7 8

time, sec

Figure 5.14: Effects of Tpo09 and Tproi010) ON Joint 2. (dotted)
diagg..lo(Tpro) = {140, 35}, (SOlid) diagg-m(T,,,o) = {1400,350},
(dashed) diago—10(Tpro) = {14,3.5} '

The e, u., product term for Joint 2 is multiplied by the Tpro(20.20) and Tine(20.20)
weighting terms. The effects of changing Tyro(20.20) are shown in Figure 5.16 where
the dotted line is the base case with Tpro(20.20) = 160, the solid line is with Tro(20,20) =
1600, and the dashed line is with T}ro(20,20) = 16. Decreasing Tpro(20,20) resulted in a
larger error signal with more oscillations while increasing diago—10(Tpro) resulted in
a slightly larger error and a longer decay time. The effects of changing Tine(20,20) are

shown in Figure 5.17 where the dotted line is the base case with Ting20.20) = 160,

/1



91

J2 Error (Solid: 1500,350, Dashed: 15,3.5, Doued: 150,35)

0.6

!

0.4

nees-
Tt ettt T P

0.4

0.6

Py~ -
i
1

-

To i 2 3 4 S s 7 8
lime, sec
Figure 5.15: Effects of T,‘m(g.g) and Tint(lO.lO) on Joint 2. (dotted)

diage_1o(Tine) = {150,35}, (solid) diage_10(Tine) = {1500,350},
(dashed) diagg_m(T,-,,,) = {15,35}



92

the solid line is with Tin(20,20) = 1600, and the dashed line is with Tini(20,20) = 16.
Increasing Tine(z0,20) resulted in a larger peak error with more oscillations but a
faster decay rate. Decreasing Tine(20,20) resulted in a slightly smaller peak error and
a longer decay rate.

It is interesting to note that both diage_10(Tpro), dtags—10(Tint), Tpro(20,20), and

Tint(20,20) had roughly the same effect on the performance.

J2 Exror (Solid: 1600, Dashed: 16, Dotted: 160)
0.8 y

H]
M
1
1

0.6

0.4

3
{}
v
[
v
'
\
1
H
0]
1

\
TG LT

error, deg
s
~

0 1 2 3 4 5 6 7 8
time, sec

Figure 5.16: Effects of Tpro(2020) on Joint 2. (dotted) Tpro(20,20) = 160,
(solid) Two(m'go) = 1600, (dashed) Tro(zo,go) =16

5.2.3 Reference Model, w,

The effects of changing the reference model dynamics on the response of Joint
3 will be investigated in this section. Joint 3 was selected rather than 2 since it
more clearly illustrated the effects of changing the model dynamics. The model
damping ratio, {, was not changed since we still desire a critically damped model

response. The effects of changing w,, are shown in Figure 5.18 where the dotted



93

J2 Esror (Solid: 1600, Dashed: 16, Dotted: 160)

0.6

04

0.2

0.2

error, deg

0.4

0.6

Figure 5.17: Effects of Tinyz020) on Joint 2. (dotted) Tingz020) = 160,
(solid) T,‘,,g(zo'zo) = 1600, (dashed) T,',.g(zo'zo) =16

line represents the base case with wn, = 4, the solid line is with w,, =8, and the
dashed line is with w,, = 2. Increasing wy,, speeds up the model and produces a
faster decay rate but increases the peak error. Decreasing wp, slows down the model

and decreases the peak error but increases the decay rate.

5.2.4 Feed-Forward Filter, K; and 7

The feed-forward filter added to the plant and reference model (BASIC/F F?)
has two parameters associated with each joint; a gain, Ky, and a time constant, 7.
This section will investigate the effects of changes in K4 and T on the model following
error (yp — ym) for Joint 2.

The effects of changing K for Joint 2 are shown in Figure 5.19 where the
dotted line is the base response with K4 = 6, the solid line is with K4 = 12, and the

dashed line is with K4 = 3. Increasing Ky resulted in an increased peal; error and



94

J3 Error (Solid: Wn = 8, Dashed: Wn = 2, Dotted: Wn = 4)

0.2

o b s daads -t

0.2

0.4

error, deg

0.6

0.8

-

time, sec

Figure 5.18: Effects of w,, on Joint 3. (dotted) w,, = 4, (solid) w,, = 8,
(dashed) w,, = 2

a longer error decay rate. Decreasing K resulted in a lower peak error and a faster
error decay rate.

The effects of changing 7 for Joint 2 are shown in Figure 5.20 where the dotted
line is the base response with 7 = 0.1, the solid line is with 7 = (.2, and the dashed
line is with 7 = 0.05. Increasing 7 resulted in a lower peak error while decreasing
T resulted in a larger peak error with more oscillations. As a rule of thumb, 7
should not be made smaller than about 3 to 5 times the sample period, T, or the

discretization of the filter will not accurately reproduce the continuous filter.

5.2.5 Plant Output Derivative Weights, «

This section will investigate the effects of changing the output derivative
weights, a, defined in (BASIC/F F?/a), on the performance of Joint 2. Figure 5.21

shows the effects of increasing and decreasing a2 2) on the Joint 2 erTor response.



J2 Error (Solid: Kd = 12, Dashed: Kd = 3, Dotted: Kd = 6)

0.8

0.4

0.2

0.2

ermror, deg

0.4

0.6

0.8

-1.2
0

Figure 5.19: Effects of K, in feed-forward on Joint 2. (dotted) K; = 6,
(solid) K = 12, (dashed) Ky =3

J2 Error (Solid: tae = 0.2, Dashed: tau = 0.05, Dotted: tan = 0.1)

0.6

04

0.2 : 3

b o

Figure 5.20: Effects of 7 in feed-forward on Joint 2. (dotted) r = 0.1,
(solid) 7 = 0.2, (dashed) = = 0.05



96

The dotted line in Figure 5.21 shows the base response with ¢(22) = 0.02, the solid
line is with a(2,2) = 0.04, and the dashed line is with a(s,2) = 0.01. Decreasing «
resulted in a slightly lower peak error but increased the oscillations. Increasing «

resulted in a larger peak error but removed most of the oscillations.

J2 Error (Solid: 2 = 0.04, Dashed: a = 0.01, Dotted: a = 0.02)

0.6

0.4 i

'
2]

£3

‘. +
N
im0y
0 V ;/

0.2

0.2

0.4

error, deg

0.6

ST R A nn
e )
——]

-1

Figure 5.21: Effects of derivative weighting o on Joint 2. (dotted) a =
0.02, (solid) a = 0.04, (dashed) a = 0.01

The effect of removing the output derivative weight for Joint 2 is shown in
Figure 5.22. Setting a(s,2) to zero increased the oscillations in the error signal but
slightly reduced the peak error.

If was found that increasing the alpha weights beyond a certain point can
actually produce unwanted oscillations in the control signals and instability of the
system. Figure 5.23 shows the torque signals for Joint 4, 5, and 6 for a trajec-
tory which moves the arm from the shutdown position to an upright position of
{0,-90,90,45,0,45} in 3 seconds. The parameter values in Table 5.7 were used
with the diagonal component of the a matrix set to {0.2,0.2,0.2,0.2,0.2,0.2}. Joint



97

J2 Error (Solid: a = 0.0, Dotted: a = 0.02)
0.8 —

f\
|

error, deg
&
~

time, sec

Figure 5.22: Effects of a zero o weight on Joint 2. (dotted) a = 0.2,
(solid) a = 0.0

6 went into oscillation driving Joint 4 into oscillation which then drove Joint 5 into
oscillation. If the wrist o terms are lowered to 0.1, then the oscillations can be

removed as shown in Figure 5.24.

5.2.6 Removal of Model Feed-Forward Filter

The effects of removing the feed-forward filter from the reference model result-
ing in algorithm (BASIC/FF/a/bias/disc) were investigated. It was found that
removal of the feed-forward from the model resulted in an unstable controller. Tun-
ing parameters could not be easily found which stabilized the robot, thus, algorithm
(BASIC/FF/a/bias/disc) was not investigated further.



98

40 (a) I 4 Joint Torf[ue 40 (®) J5 Joint TOIPUC
e I 20
4
™ 0 -
£ 0
-20
40 -20
0 2 4 6 0 2 4 6
m, sec dmev sec
40 (c) J6 Joint Torgge

Figure 5.23: Wrist Joint Torques for Instability. (a) Joint 4. (b) Joint
5. (c) Joint 8.

6 (a) J4 Joint Torgue 2 (%) IS Joint T%, ‘
H 0
5 [\ g ., [
g / \ s [\ i/
E 2 : g \ "/
)\ Ty
0o 2 n 6 '80 z ; 6
time, sec time, sec
2 {c) J6 Joint Torque

torque, Nm

T
S ST

Figure 5.24: Removal of Wrist Instability by Lowering o Weights. (a)
Joint 4 Torque. (b) Joint 5 Torque. (c) Joint 8 Torque.



99

5.2.7 Removal of Model and Plant Feed-Forward Filter

The effects of removing the feed-forward filter entirely from the plant and
model resulting in algorithm (BASIC/a/bias/disc) were investigated. Figure 5.25
shows the model following error for Joint 2 with no feed-forward. The dotted line is
the base response with feed-forward added to both model and plant, the solid line
is wiih no feed-forward and a(2,2) = 0.3, and the dashed line is with no feed-forward
and ¢(z,2) = 0.2. The removal of the feed-forward resulted in more oscillations which

were lessened but not removed by increasing a3 2)-

T2 Enor (Solid: alpha=0.03, Dashed: alpha=0.02, Dotted: with FF)

0.4

0.2

0.2

error, deg

0.4

D6

0.8

Figure 5.25: Joint 2 error with no Feed Forward. (dotted) Response
with FF, (solid) No FF with a =0.03, (dashed) No FF with
a = 0.02

5.3 Summary

In this chapter we investigated the ability of the DMRAC algorithm to control

a PUMA 560 Manipulator such that it followed some typical minimum jerk six joint



100

trajectories. It was found that the robot had no problems tracking the trajectores
with an acceptable error. Next we investigated the effects of changing the tuning

parameters on the overall performacnce.



CHAPTER 6

Simulation Results (Load Cases)

This chapter will present the results of the Matlab simulations of Direct Model
Reference Adaptive Control of a six link PUMA 560 Manipulator, fully-centralized,
in the presence of static and dynamic load changes. All results will be displayed

with the bias term, qui,, removed (Section 2.7).

6.1 Adaptation to “Static” Payload Variation

In this section, we will investigate the performance of the DMARC algorithm
in tracking a trajectory with different loads in the gripper. The algorithm will
initially be given some time to adapt to the load and then will be command over
a trajectory. Six runs will be performed for each trajectory. The first run will be
with no load, and the next five will be with a load of 1kg, 2kg, 3kg, 4kg, and 5kg.
For reference, the masses of the arm links are listed in Table 6.2. Two different
trajectories will be run. The tuning parameters used for the static load tests are

shown in Table 6.1.

6.1.1 Trajectory One

The first trajectory for the static load tests is shown in Table 6.3 and is illus-
trated in Figure 6.1, where the numbers in the figure refer to the knot points in the
table. The algorithm is allowed to adapt to the load for 4 seconds and then the arm
is extended out to its full reach and swung 45 degrees. At this full extension, the
payload mass exerts maximum gravity and inertial loading on the arm.

The errors between plant output and reference model output for Joints 1, 2, 3,
4, 5, and 6 are shown in Figures 6.2 to 6.7, respectively. The figures show the error
plots for all six load cases (Okg, lkg, 2kg, 3kg, 4kg, and 5kg). A summary of the

101



Table 6.1: Parameter Values for Static Runs

Toro e | 20 40 22 02 02 02
(diag [ “zm” | 140 20 140 35 100 22

component) 14 02 14 02 14 0.2
“um” | 140 160 110 14 14 14
Tine “e” | 20 60 25 0.2 02 0.2
(diag “tm” | 140 20 150 35 140 25
component) 14 02 14 02 14 0.2
“Up” lﬂ 160 130 14 14 14

Joint 1 2 3 4 5 6

Model Wa 4 4 4 7 7 7

¢ 11 1 1 1 1 1

Feed K, 6 6 6 6 6 6
Forward + 101 01 01 01 01 01
alpha a |0.02 002 0.02 0.02 0.02 0.02

Table 6.2: Link Masses

| Link Mass (kg) I
“(link 1 is fixed to the base) |
17.4
4.8
0.82
0.34
0.09

| G| ] W NI

Table 6.3: First Static Load Trajectory

Knot ||  Joint Positions (deg) ][ Time
Poxnt]|1[2|3l4|5| "(sec

0 [ 045180 90 |

T ][0 [ 45180 0 45 0| 4

2* ||45] 0 {90 [0J90[O0 | 5

102



— T~

@

r
\

®

Table 6.4: First Static Load Trajectory Error Summary

Figure 6.1: First Static Load Trajectory

Mass Peak Error (degrees) B

(kg) [ 1 2 3 3 5 6
0 |-0.4279 | 0.2808 | 0.8027 | -0.0623 | -0.4008 | 0.8270
1 | -0.4266 | 0.5258 | 0.8396 | -0.0620 | -0.4045 | 0.8244
2 0.4253 | 0.7709 | 0.8764 | -0.0616 | -0.4138 | 0.8217
3 0.4240 | 1.0477 | 0.9133 | -0.0616 | -0.4174 | 0.8191
4 0.4213 | 1.3165 | 0.9576 | -0.0620 | -0.4248 | 0.8164
3 0.4187 | 1.6169 | 1.0056 | -0.0625 | -0.4304 | 0.8138

103

peak errors over the trajectory segment 1-2 (see Table 6.3) is given in Table 6.4.

6.1.2 Trajectory Two

The second trajectory for the static load tests is shown in Table 6.5 and is

illustrated in Figure 6.8, where the numbers in the figure refer to the knot points in

the table. The algorithm is allowed to adapt to the load for 4 seconds and then the

arm is extended upward.

‘The errors between plant output and reference model output for Joints 1, 2, 3,



Model Following Error (ym - yp) for Joint 1

-0kg

0.05 T

0.45
0

Figure 6.2: Joint 1 Error Plots for First Trajectory (All Loads)

Model Following Exror (ym - yp) for Joint 2

N A
JA J/\N

1AW R

err, degrees

-0kg

0.5

Figure 6.3: Joint 2 Error Plots for First Trajectory (All Loads)

104

- %



105

Model Following Emor (ym - yp) for Joint 3

1.2

0.: / \ i

0.6 | \

[ =%
\

err, degrees

time, sec

Figure 6.4: Joint 3 Error Plots for First Trajectory (All Loads)

Model Following Emror (ym - yp) for Joint 4

0.01 -

0 .

o g\.on
.01 Sig \
0.02

Figure 6.5: Joint 4 Error Plots for First Trajectory (All Loads)



eIt degrees

Figure

err, degrees

106

Model Following Error (ym - yp) for Joint §

02

0.3 \
\ / Sk
04 :

0.5

6.6: Joint 5 Error Plots for First Trajectory (All Loads)

Model Following Error (ym - yp) for Joint 6

0.9

I\
0.6 / \ -

Iy D | ]
: e
03 /
3 ] \
(/AR A\

0.1

Figure 6.7: Joint 6 Error Plots for First Trajectory (All Loads)



Table 6.5: Second Static Load Trajectory

Knot |  Joint Positions (deg) Time
Point | 172 ] 3 [4]5]6 | (sec) |
0 JJO|-45]180[0]45[/90] - |
T [0 | 45]150 ] 0 [45|90] 4
5% 45|90 90 [ 45|90/ 90] 5

21

Figure 6.8: Second Static Load Trajectory

107



Table 6.6: First Static Load Trajectory Error Summary

Joint | Okg Peak Error | 5kg Peak Error
Number (deg) __(deg)
1 -0.6685 -0.6583
3 1.120 71,789
3 0.7780 0.8946
4 -0.2325 -0.2809
5 -0.1659 -0.1191
6 0.00769 0.0879

4, 5, and 6 are shown in Figures 6.9 to 6.14, respectively. The figures show the error
plots for all six load cases (0kg, 1kg, 2kg, 3kg, 4kg, and 5kg). Table 6.6 summarizes
the Okg and 5kg peak errors over the range of interest, (4 < ¢ < 10), for each of the
joints.

Mode! Following Error (ym - yp) for Joint 1
0-05 ‘, ! T H

0.45
0

Figure 6.9: Joint 1 Error Plots for Second Trajectory (All Loads)



Mode! Following Error (ym - yp) for Joint 2

1 ..... A

err, degrees

.OZkg

0 2 4 6 8 10 12

time, sec

Figure 6.10: Joint 2 Error Plots for Second Trajectory (All Loads)

Model Following Error (ym - yp) for Joint 3

1.2

erm, degrees

s
(8

lime, sec

Figure 6.11: Joint 3 Error Plots for Second Trajectory (All Loads)

109



110

Model Following Error (ym - yp) for Joint 4

H T

.07
0

time, sec

Figure 6.12: Joint 4 Error Plots for Second Trajectory (All Loads)

Mode! Following Error (ym - yp) for Joint 5
0.2 . : il

0.1

0.2

erT, degrees

D3+

04k e s s

4)'so 2 4 6 8 10 12

lime, sec

Figure 6.13: Joint 5 Error Plots for Second Trajectory (All Loads)

4



111

Model Following Error (ym - yp) for Joint

0.9

0.8

0.7

[ Y- S——

0.4

e, degrees

0.3

0.2

0.1

0.1

Figure 6.14: Joint 6 Error Plots for Second Trajectory (All Loads)

6.1.3 Summary

By comparison of the 0kg error plots to the 5kg error plots, it was found that
for Joints 1, 3, 4, 5, and 6, a larger portion of the model following error was caused
by the adaptation to the changing plant than was caused by the addition of the
various loads. Thus the DMRAC algorithm was able to adjust for the different load
inertias and gravity loading with acceptable peak errors as compared to the no load
case. Joint 2 has the largest gravity loading and must do the most adapting to the

changing load mass as Figures 6.3 and 6.10 show.

6.2 Adaptation to “Dynamic” Payload Variation

This section will investigate the effects of suddenly changing the load carried

by the arm. The tuning parameters used for these runs are shown in Table 6.7.



Table 6.7: Parameter Values for Dynamic Load Change Runs

Toro “e.” 20 40 22 0.2 0.2 02
(diag “za | 140 20 140 35 100 22
component) 1.4 02 14 02 14 0.2
“un”| 140 160 110 14 14 1.4
Tint “.” | 20 60 25 02 02 0.2
(diag “zm” | 140 20 150 35 140 25
component) 14 02 14 02 14 0.2
“un" | 140 160 130 14 14 14

Joint 1 2 3 4. 5 6

Model Wy 4 4 4 7 7 7

C 1 T 1 1 1T 1

Feed Ky 6 6 6 6 6 6
Forward T 0.1 01 01 01 0.1 0.1
alpha a 0.035 0.02 0.02 0.01 0.01 0.01

Table 6.8: Peak Errors for First Dynamic Load Change, 5kg Case

Joint | Peak Error (deg) |
1 0.032
2.25
0.43
-4.15

-0.115

-0.0475

D O] ] I 00

6.2.1 First Case

The first case investigated the addition of a load to the robot whvile it was
trying to hold the robotvat the shutdown position (see Figure 3.4). Loads of Okg,
kg, 2kg, 3kg, 4kg, and 5kg were added at ¢t = 2s. Figures 6.15 to 6.20 show the
model input following error, (¥, — um), for each of the joints subject to the six load
cases. Joints 1, 2, 3, 4, and 6 recovered from the load addition, (y, — um) = 0, in
about 4 seconds. Joint 5 recovered in about 2.5s. Table 6.8 shows the worst case
peak errors for the 5kg load addition. Figure 6.21 shows the torque signals for Joints

1, 2, and 3 for the 5kg load case.



113

Tracking Error (ym - um) for Joint 1

0.035

0.03 : bl

0.025

time, sec

Figure 6.15: Joint 1 Error Plots for Addition of Load at Shutdown Po-
sition

Tracking Error (ym - um) for Joint 2

25

em, degrees

Okg

0.5
0

time, sec

Figure 6.16: Joint 2 Error Plots for Addition of Load at Shutdown Po-
sition



114

Tracking Error (ym - um) for Joint 3
0.45 T T T

o
-

(")

RS

Figure 6.17: Joint 3 Error Plots for Addition of Load at Shutdown Po-
sition

x103 Tracking Error (ym - um) for Joint 4
2 T T T T

err, degrees

time, sec

Figure 6.18: Joint 4 Error Plots for Addition of Load at Shutdown Po-
sition



Tracking Error (ym - um) for Joint §

-

0.04
: :, -Skg :

£0.02

-0.04

err, degrees

-0.06

20.08 ......... -

| -sxg :

2012 i H i H
10 1 -2 3 4 5 6

time, sec

Figure 6.19: Joint 5 Error Plots for Addition of Load at Shutdown Po-
sition

Tracking Error (ym - um) for Joint 6
0.01 y - T

: Okg

0.04

-0.05

time, sec

Figure 6.20: Joint 6 Error Plots for Addition of Load at Shutdown Po-
sition



116

0.5 (a) I 1 Joint Torgue 0 ®) g12 Joint Tor:guc
20F- e e e
5 ofl £ W Sk
o g' I %
g 05 -] 1(\ :
-80 H :
? V
-1 i Skg — .100 : H
0 2 4 6 0 2 4 6
time, sec time, sec
0 {c) J3 Joint Torque
Sk
e 1
z
g -2 .
g :
e :
-30b .
40 H
0 2 4 6

Figure 6.21: Joints 1, 2, and 3 Torque signals for Dynamic Case One,
5kg. (a) Joint 1. (b) Joint 2. (c¢) Joint 3.

6.2.2 Second Case

The second case follows the trajectory shown in Table 6.9 and is illustrated
in Figure 6.22. The arm moves from the shutdown position to a fully outstreatched
position, waits there for 2 seconds, and then moves back to the shutdown position.
The loads were added at t = 6 seconds when the robot was outstretched. Figures 6.23
to 6.28 show the reference model following error, (y, — ym ), for each of the six joints
under the six load conditions. Joint 2 and 3 were affected the most by the load
changes. Joint 2 had a peak error of about 9 degrees which decayed to zero in about
4 seconds. Joint 3 had a peak error of 1.8 degrees which decayed to the no load error
signal in about 2.5 seconds. The other joints had load induced errors which were
typically lower then the tracking errors for the no load case. The desired and actual

joint positions for Joints 1, 2, and 3 are shown in Figure 6.29 for the 5kg case.



Table 6.9: Second Dynamic Load Trajectory

Knot Joint Positions (deg) Time
| Point | 1] 2 | 3 4] 5 | 6 || (sec)
0 0[-45]1S0[0[45[90 ] -
1* [[45] 0 [ 90 {0{9 ] O 5
2* |45 0 | 90 {090} O 2
3* 0 |-45|180[0] 45|90 5

Figure 6.22: Trajectory Used for Second Dynamic Load Change

117



Tracking Error (ym - um) for Joint 1

0.8

0.6

0.2

e, degrees

0.2

0.4

0.6+ -

0.8

Figure 6.23:

time, sec

Joint 1 Error Plots for Second Dynamic Load Case

10

Tracking Error (ym - um) for Joint 2

T

err, degrees

Figure 6.24:

Joint 2 Error Plots for Second Dynamic Load Case



119

Tracking Error (ym - um) for Joint 3

2 ' T 4
1 : ——
0 2 4 6 8 10 12 14 16
time, sec

Figure 6.25: Joint 3 Error Plots for Second Dynamic Load Case

Tracking Error (ym - um) for Joint 4

0.04

g
&
8 - -
E
o
'0.08 M i i i i i
0 2 4 6 8 10 12 14 16

time, sec

Figure 6.26: Joint 4 Error Plots for Second Dynamic Load Case



Tracking Error (ym - um) for Joint §

03 ; s ;

0.2

err, degrees

03 i H i . ;

Figure 6.27: Joint 5 Error Plots for Second Dynamic Load Case

Tracking Error (ym - um) for Joint 6

T T -

0.4

0.2

err, degrees

0.2

B 4 I ¥ L R

0'6 A e e e A e
0 2 4 ] 8 10 12 14 16

ume, sec

Figure 6.28: Joint 6 Error Plots for Second Dynamic Load Case



J2 Actual and Desired Pos.

pos, deg

pos, deg

time, sec time, sec

ume, sec

Figure 6.29: Joints 1, 2, and 3 Position for 5kg Dynamics Load Case
Two. (a) Joint 1. (b) Joint 2. (c) Joint 3.

6.2.3 Third Case

For the third case, the trajectory in Table 6.10 was used. Figure 6.30 illus-
trates the trajectory given in the table. The robot was commanded to move from
the shutdown position to a vertical position along a slow trajectory of 10 seconds.
The various loads were added at t = 3 seconds when the robot was halfway to its
destination. The model following error plots are shown in Figures 6.31 to 6.36.

For Joints 1 and 6 the error disturbances caused by the load additions were
small compared to the no load error. Joints 2 and 3 were affected the most by
the load changes having a 2.0 degree and 1.1 degree peak error for the 5kg load
respectively. For the 5kg load, the wrist Joints 4 and 5 had their peak error doubled
from the no load case to -0.41 degrees and 0.11 degrees respectively. In all cases,
within about 2 seconds, the error trajectories decayed back to and approximately

followed the no load error trajectories. The joint positions, model output. and



Table 6.10: Third Dynamic Load Trajectory

Knot Joint Positions (deg) Time
| Point | 17273 ]4[5]6 1] (se)
0 JJO[-45[1S0[ 0 [45]90] -

1* |45{-90| 90 |90 |S0] O 10

2* ||45|-90| 90 |90 |90 | O 10

torques for Joints 2 and 3 with the 5kg load are shown in Figure 6.37. The significant
adaptation gains for Joint 2 (row 2 of K'p and row 2 of K) are shown in Figure 6.38

for the 5kg load addition.

Figure 6.30: Trajectory Used for Third Dynamic Load Change

6.2.4 Summary

By examination of the above three cases, it is clear that the model following
errors for Joints 2 and 3 had the worst performance of the six. The Joint 1 model
following error was quite reasonable for the load additions. Joint 1 saw the largest
increase in innertia from the load additions but saw no gravity loading change.

Joints 2 and 3 had to compensate for most of the gravity loading due to the load

-



Tracking Error (ym - um) for Joint 1

o.o: \ e o ;
0.1 \ /
\ 7

;

kg

-0.45 - i
0 2 4 6 8 10 12 14 16

time, sec

Figure 6.31: Joint 1 Error Plots for Third Dynamic Load Case

Tracking Emror (ym - um) for Joint 2

T T
Y
A

;
§ of- X
oSk > R -
1 ; 3 5xg
1% 2 4 6 8 10 12 14 16

time, sec

Figure 6.32: Joint 2 Error Plots for Third Dynamic Load Case

123



124

Tracking Error (ym - um) for Joint 3

1.2

[
0.8 Q

0.6

-5kg

err, degrees
o

-

/

0.2 /

02
Figure 6.33: Joint 3 Error Plots for Third Dynamic Load Case

TnddngEnor(ym-um)forJoim4
Skgt : ;

0.05

045 — e L , -
() 2 4 6 8 10 12 14 16

time, sec

Figure 6.34: Joint 4 Error Plots for Third Dynamic Load Case



Tracking Error (ym - um) for Joint §

0.12

0.1 b mererrrms ciees Bene rearenreeeire R e

g

0.08

0.06

0.04

0.02

err, degrees

-0.02

0.04

-0.06

-0.08

Figure 6.35:

10 12 14 16

~
&
[+ ]
o

time, sec

Joint 5 Error Plots for Third Dynamic Load Case

Tracking Error (ym - um) for Joint 6

0.25

0.2

0.15

/L

0.1

err, degrees

0.05

Figure 6.36:

2 4 6 8 10 12 14 16

time, sec

Joint 6 Error Plots for Third Dynamic Load Case

125



126

40 (2) 12 Actual and Desired Pos. J3 Actual and Desired Pos.
¥ Skg g \Stg
g \ g 120
& 3o - \
N 100 -
_lw A ; w E
0 s 10 15 0 5 10 15
time, sec time, sec
50 (c) J2 Joint Torggg 2 {d) J3 Joint Torque
€ 0 E 0
T 5kg
-4 : z
g. / g 20 [T
5 40 J
100 ; 0 H
0 5 10 15 0 5 10 15
time, sec time, sec

Figure 6.37: Joints 2 and 3 for Third Dynamic Load Case (5kg). (a)
Joint 2 Position. (b) Joint 3 Position. (c) Joint 2 Torque.
(d) Joint 3 Torque.

10 —Kp(27), Kp(29), Kp(2,11) 10,—Kp(2:19), Kp(2,20), Kp(2,21)
s A 5 R
0 ~~~~~~ :'_/.\ 0 :-_/-\:
Sel M e SSa W P
Y 7 ~d % s
: N AN
5 A — 5 H d i
0 5 10 15 0 5 10 15
time, sec time, sec
15— K27, Ki(29), Ki(2.11) 15— Ki(2,19), Ki(2.20), Ki(2,21)
10F7772ne S : 10 T "\“
s - 5 _..'A\A‘.‘.. O S
e 3
0 : - 0 i S
-5 " -5
-10 i . .10 E=———
0 5 10 15 0 5 10 15
time, sec time, sec

Figure 6.38: Significant Elements in K; and Kp for Joint 2 (5kg)



127

additions but did not see as much of an innertia change as Joint 1. Thus, it would
seem that the DMRAC algorithm had a more difficult time adjusting to the gravity

loading than it did to the innertia changes.



. CHAPTER 7
Simulation Results (Reducing Trajectory Tracking Error)

The results of the previous two chapters dealt with the error between the plant and
the model output (the model following error) and ignored the trajectory tracking
error (y, — um) which is of interest when the time position of the robot joints is
important as in multiple arm interactions or time dependent assembly tasks. As
was seen in the preceding chapters, the reference model introduces a lag to the
minimum jerk trajectories which produces a trajectory tracking error. This chapter
will investigate two methods to reduce this error. The first method introduces an
inverse reference model dynamics block between the trajectory generator and the
reference model so ¥, follows the desired trajectory. The second method investigates
the effects of simply speeding up the reference model to reduce the lag. All results

will be displayed with the bias term, guiu, removed (Section 2.7).

7.1 Tracking Errors

The results presented in the previous two chapters have delt primarily with
the model following error, y, — ym. since the original goal of the DMRAC algorithm
was to minimize the model following error. This is a valid goal for control design but
is not sufficient for trajectory planning design. From the trajectory generation point
of view it is desirable to have a control design which forces the robot manipulator to
follow the commanded trajectory with as little trajectory following error as possible.
Because of the lag introduced by the reference model dynamics, the results of the
last two chapters do not meet the trajectory planning goals.

Figure 7.1 shows the response to a typical minimum jerk trajectory (Joint 2 was
selected because it had the greatest error). Figure 7.1(a) shows the delay introduced

by the model, the solid line is the desired trajectory (input to the model) and the

128



dashed line is the model output. Figure 7.1(b) shows the model following error.
The peak error was about 1.75 degrees. The trajectory tracking error is shown in
Figure 7.1(c). The peak trajectory tracking error was about -11.5 degrees where the

model lag made up about 80% of the error.

(a)J2 um and ym_ 2 ®)J2yp-ym .

time, sec

time, sec

Figure 7.1: Reference Model Introduced Lag and Tracking Errors. (a)
Model Introduced Lag, (b) Model Following Error, (¢) Tra-

Jectory Following Error

7.2 Predictive Compensator

The first method used to reduce the trajectory following error is to use the
information about the reference model dynamics to adjust the trajectory which is
sent to the model. Figure 7.2 shows the current implementation of the trajectory
generator and reference model interaction where q is the desired trajectory. To force
Ym to follow ¢, we can insert some dynamics between the trajectory generator and
the reference model as shown in Figure 7.3. The predictor in Figure 7.3 uses the

fact that the trajectory and its higher derivatives (when using minimum jerk) are



130

known and the fact that the reference model dynamics are also known and constant

to adjust the input to the model, u., such that y,, follows q. If the reference model

dynamics are given by G(s) and the predictor dynamics are given by H(s), then the

following holds:

um(s) = H(s)g(s)
ym(s) = G(s)um(s)

from which we get,

ym(s) = G(s)H(s)q(s)

Now, if H(s) = G(s)~!, then (7.3) reduces to,

ym(s) = q(s)
which is the desired result. G(s) is given by,

2
wh

G(") = ym(s)/um(S) = p

2 + ?.CWnS + U).?‘

Thus, H(s) is then,

_ 82 + 2wns + W2

H(s) = um(s)/q(s) =

w}
Converting (7.6) into the time domain yields,
g(t 20q(t
un(t) = at) 24 )+q(t)

w? W,

(7.3)

(7.4)

(7.5)

(7.7)

The realization of (7.6) requires two differentiations of the desired trajectory

q(t). Since the input, g, is typically formed analytically, there is no noise to be

amplified by the differentiation and the higher order derivatives can also be solved



131

for analytically. For the minimum jerk trajectories, the higher order derivatives are
given by (3.16)-(3.17). Using a minimum jerk trajectory gives us continuous func-
tions for g, ¢, and §, thus the model input (7.7) is continuous. Also, the minimum
jerk equations yield ¢ = 0, ¢ = 0, and § = 0 at knot points which will result in a
um = 0 from (7.7). This means that u,, is causal (i.e. undefined at times before the
beginhing of a trajectory segment) which means that it can be realized in real time
without the need for computing all of the trajectory segment paths off-line.

Figure 7.4 shows an example u.,, generated for a2 minimum jerk trajectory ¢.
The solid line is the desired trajectory and the dashed line is the computed model
input which, when applied to the reference model, will yield a model output that
follows g. Notice that u., is not only continuous but is also smooth. When the un,
generated by this predictor is applied to the reference model, the model output will

follow g and the DMRAC algorithm will force the plant to follow y, and thus g.

Trajectory |4 Yn | Reference |’m
Generator Model

Yo # @

Figure 7.2: Current Implementation of Trajectory Generation

7.3 Predictive Compensation Simulation Results

The same trajectory illustrated in Figure 7.1 was used with the predictor
setup illustrated in Figure 7.3. The results of the run are shown in Figure 7.5.

Figure 7.5(a) shows the trajectory tracking error y, — q. Figure 7.5(b) illustrates the



Trajectory { 4 . “m | Reference | Ym
Generator Predictor Model

Figure 7.3: Predictive Implementation of Trajectory Generation

qand um

100

70

50

pos, deg

0 0.5 1 % 2 25 3 35 1

time, sec

Figure 7.4: Example Output from Predictor



133

) —@02yp-q 50 Bl2gandum
-]

%n 3
" g
g 2.

2L i - i

0 [ 10 15 20

time, sec

20 !(c)JZJoi?lTorquez ——
E
z
4

time, scc

Figure 7.5: Joint 2 Response using Predictor. (a) Trajectory Tracking
Error. (b) Trajectory and Synthesized Model Input. (c)
Joint Torque.

desired trajectory q (solid) and the modified model input u,, (dashed). Figure 7.5(c)
shows the torque for Joint 2. Comparing Figure 7.5(a) to Figure 7.1(c) shows the
improvement gained by using the predictor. The peak trajectory tracking error was
reduced from 11.5 degrees to 1.36 degrees. It is interesting to note that the trajectory

tracking error was not improved beyond the original model following error (without

the predictor).

7.4 Increasing Reference Model Speed

A second method to reduce the trajectory tracking error is to simply increase
the undamped natural frequency of the reference models. Figure 7.6 shows the
trajectory tracking error when w, for the first three Joints is increased from 4 to 20
rad/sec. Comparing Figure 7.6 to Figure 7.1(c) shows the improvement gained by

increasing w,. The peak error was reduced from 11.5 degrees to 1.81 degrees. Note:



134

d

2 2 4 6 ) v 12 14 16 18 20

time, sec

Figure 7.6: Joint 2 Response using Increased w,

Increasing w, will decrease the lag introduced by the model but will not remove it

entirely.

7.5 Summary

In this chapter we introduced two methods to improve the trajectory track-
ing error. The first consisted of adding a predictor block between the trajectory
generator and the reference model to “advance” the trajectory to counteract the
lag introduced by the model. For minimum jerk trajectories, this predictor block
resulted in a very simple realization. The result was a greatly improved tracking
€rror.

The second method was to simply increase the reference model speed. This

also resulted in a great improvement on the trajectory tracking error.



CHAPTER 8
CIRSSE Testbed Environment

This chapter will briefly discuss the portions of the CIRSSE! Testbed which were
used to control an actual PUMA 560 Manipulator with the DMRAC algorithm.
The CIRSSE Testbed is a two arm, 18 degree of freedom (DOF'), redundant robotic
manipuiator equipped with an extensive sensory array. Each arm is composed of a
six DOF PUMA 560/600 Robotic Manipulator mounted on a three DOF platform.
The many sensors include 18 joint encoders for accurately determining manipulator
joint positions, two force/torque sensors at the end of each arm, various joint limit
switches, force controllable grippers with infra-red cross fire sensors, five black and
white video cameras, and a laser range finder. The Testbed hardware is controlled
by a collection of networked Sun4 workstations, a VME bus cage containing five
68000 series CPUS and various peripherals which is used to control aspects of ma-
nipulator motion, and a second VME bus cage containing two 68000 series CPUS
and a Datacube high speed vision processor which is used for the vision aspects of
the Testbed. The Testbed was developed at the Center for Intelligent Systems for
Space Exploration at Rensselaer Polytechnic Institute to support development of
cooperative robotic systems.

This'chapter will briefly discuss the hardware and software comprising the
CIRSSE Testbed. Only the portions of the Testbed which were used to control the
PUMA 560 will be discussed. Although, at the time of this writing there did not
exist a complete description of the CIRSSE Testbed, a good working knowledge can
be pieced together from [30] and the sources cited therein. This chapter will also

discuss some implementation issues.

1Center for Intelligent Systems for Space Exploration, Troy, NY

135



136

8.1 CIRSSE Testbed Hardware

The CIRSSE Testbed contains a vast array of robotic hardware for performing -
experiments in robotic control, manipulation, and planning; vision processing and
visual servoing; and distributed computing and control. This section will describe

the hardware portions of the testbed which were used in the experiments.

8.1.1 Puma Manipulators

The CIRSSE Testbed manipulators consists of a PUMA 560 and a PUMA
600 each mounted on three DOF transporter platforms. Only the PUMA 560 (to
be referred to as the PUMA in subsequent sections) was used in these experiments.
Figure 8.1 shows a picture of the PUMA mounted on the platform.

The PUMA is a six DOF manipulator where each joint is actuated through a
speed reducing gear train by a permanent magnet direct current (PM DC) motor.
Each motor is equipped with a position encoder to accurately determine the motor
position and thus the joint position. Note: The motors are not equipped with
tachometers so the velocity information must be derived from the position data as
discussed in Section 8.3.1 The coordinate frames used for the PUMA are detailed in
[23] and are the same as those used in the previous simulation sections. Table 8.1
lists the joint ranges for the PUMA. The PUMA end-effector is equipped with a

pneumatic gripper which was used to grasp a hook onto which various weights

could be attached.

8.1.2 Unimate Controller

The original Unimate controllers are used to power the joint motors and read
the joint encoders in the PUMA arm. The Unimate controller is set up in a hier-
archical fashion where each joint is individually powered by a separate power amp

and controlled by a separate joint micro-processor. Each joint micro-processor takes



Figure 8.1: PUMA 560 Manipulator

Table 8.1: PUMA 360 Joint Ranges

Joint | Minimum Position | Maximum Position
(degrees) (degrees)

1 -250 70

2 -223 13

3 -52 232
4 -134 150
5 -100 100
6 -262 250

137



138

care of reading the position encoders, servoing the arm with a built in control loop,
sending desired torques to the joint, and some other miscellaneous low level tasks.
Each of these joint processors communicates to an Arm Interface Board (AIB).
The AIB is accessed through a DR-11C interface board. All of these boards are
mounted in a card cage with a Qbus backplane inside the Unimate controller. The
CIRSSE Motion Control Systems hardware (described in Section 8.1.4) interfaces
to the DR-11C through a Qbus to VME mapper. For more detailed information on
the interface to the Unimate Controller see [31]. Note: The original VAL II control
language which was shipped with the Unimation controller was bypassed and the
joint micro-processors were accessed directly through AIB card.

The joint micro-processor cards support two modes of joint motion. The first
mode is POS MODE (position) where an internal servo loop is used to pbsition
the joints to some desired angular position. This positioning mode is initially used
to position the robot in the shutdown position (as defined in the previous simu-
lation sections) before the DMRAC algorithm was enabled. The second mode is
CUR MODE (torque) where the micro-processor allows the joint torques to be con-
trolled at each sample interval. The second mode is used by the DMRAC algorithm

to control the robot joint positions.

8.1.3 CIRSSE Computing Network

The CIRSSE computing network is a collection of various processor platforms
all connected via an EtherNet. The various platforms (or chassis) consist of Sun4
workstations and two VME Backplane Cages. One of the VME Cages is used to
control the robots and is called the Motion Control System (MCS) and the other
VME Cage is used to control the vision systems and is called the Vision Services
System (VSS). Both of the VME Cages use one of the Sun4’s (labeled Venus) as a

gateway to the network which helps to isolate some of the Sun network traffic from



139

the VME Cages.
For the DMRAC experiments, only one of the Sun4’s (Venus) and one of the

VME Cages (MCS) were used. The majority of the software ran on the MCS Cage

and the Sun4 was used primarily to display data and service user requests.

8.1.4 Motion Control System Cage

The Motion Control System Cage (MCS Cage) is a VME Bus card cage which
contains the computers and peripherals used to control all aspects of robot motion

on the CIRSSE Testbed. The portions of the MCS Cage used in the DMRAC

experiments consists of the following boards:

o Three Motorola MVME147SA-2’s (68030 series cpus, 32 MHz, 8 Meg RAM),
e Two Motorola MVME135’s (68020 series cpus, 16 MHz, 1 Meg RAM),
e One Motorola MVME—224—1 (Shared Memory Module),

e One VMEbus to QBus Mapper (for Communication with Unimate Controller)

There are eight other VME cards in the cage which are used for other aspects of
the CIRSSE Testbed (platform control, Force/Torque Sensor Control, etc.) which
were not used for the DMRAC experiments and will not be described. One of the
MVME147SA-2’s has an EtherNet port which is connected to the CIRSSE computer

network (described in Section 8.1.3).

8.2 Software

This section will describe the flexible muiti-layer software system which runs

on the CIRSSE Testbed processors. All of the code described below was written in
C [32].



140

8.2.1 Overview

The CIRSSE Testbed is comprised of five major software components as shown
in Figure 8.2. Unix and VxWorks [33] are the foundation of the CIRSSE software
development environment. Unix is the multitasking operating system used on the
Sun4 workstations and VxWorks is the real time multitasking operating system used
on the 68000 series VME Cage processors. The CIRSSE Testbed Operating Sys-
tem (CTOS) was developed to overcome limitations in UNIX and VxWorks when
dealing with interprocessor communication, synchronization, and distribution. The
Testbed Components consist of the Motion Control System (MCS) which is used
to control the motion of the robotic manipulators and the Vision Services System?
(VSS) which is used to control the various Testbed vision systems. The final com-
ponent, Applications and Experiments, consists of the code which is used to control

a particular experiment on the CIRSSE Testbed.

Applications and Experiments

Testbed Components
MCS and VSS

CIRSSE Testbed Operating System

VxWorks Unix

Figure 8.2: CIRSSE Testbed Software

Figure 8.3 shows a detailed block diagram of the software used to run the

2Not used in the DMRAC experiments



141

DMRAC experiments on an actual PUMA 360 Robotic Manipulator. The various

components shown in the figure will be described in the subsequent sections.

i :
Message ; B S
sPass.mg : 5 [ message handle [ message handle} '
ervices : TGEN :l
; : Data Logging :
; —  DMRAC Controller —
E 5 - §
IPB : ' Shared Memory L message handler
: i Application :
E . [ message handle i
|  PUMA Channel
: : Driver
E ; State Manager D———
Synchronous| | ; - :
. : ! Hardware Driver '
Services : ' MGCS
CTOS é Unimation Controller Function Library Interface
.................... 1 and
PUMA 560 | oo Message Passing Interface

Figure 8.3: Block Diagram of Software Used in DMRAC Experiments

8.2.2 Multi-Tasking Unix and VxWorks

The basic building block of the software system is the task. A task is a single
thread process, or program, which runs on a single processor. A task in the CTOS
system can be classified as a message handler, a synchronous task, or a data driven
task. These classifications will be defined in the following sections.

Tasks generally have two states. running and blocked. When a task is running



142

it is allowed to use processor resources in a time sliced manor. When a task is
blocked, it is idle and does not run at all. A task is typically blocked when it is
waiting for data or for some hardware peripheral to become available. .

The entire software collection consists of many tasks all running at the same
time. On a single processor, only one task can use the processors resources (memory,
CPU, floating point processor, timers, etc.) at a time, thus all tasks are given a small
window of time to use the resources and then this window is passed on to another
task. Unix and VxWorks take care of this window passing or multi-tasking. What
Unix and VxWorks do not support is a uniform and easy method for communication
between tasks, synchronization of tasks, and distribution of tasks. This missing

functionality is provided by CTOS.

8.2.3 CIRSSE Testbed Operating System

The CIRSSE Testbed Operating System is built on top of Unix and VxWorks
to provide for interprocess communication, synchronization, and distribution. These

three paradigm are provided by the three components of CTOS:
o Interprocess Communication — message passing services,
e Interprocess Synchronization ~ synchronous services,
o Interprocess Distribution — bootstrap services.

The message passing services are built on UNIX sockets (which are also sup-
ported by VxWorks) and allow tasks to communicate by passing messages amongst
themselves. These messages may contain optional data. Tasks which communicate
using messages are called message handlers since they respond to incoming messages
or events. Message handler tasks are not considered real time since the message la-
tency is on the order of 2 — 4 ms on the VME Cages. Message passing is supported

on the Sun4 Processors and both of the VME Cages.



143

Synchronous services provides a method for synchronizing tasks. Synchroniza-
tion refers to the process of changing the state of one or more tasks from blocked
to running such that all of the tasks in question are unblocked at roughly the same
time. Synchronous Services provides two methods to unblock or release tasks, time
synchronous and data synchronous. Time synchronization refers to releasing one or
more tasks on a periodic basis and is the primary function of Synchronous Services.
Data synchronization refers to releasing a task when data or a peripheral becomes
available. This functionality is provided by a companion service called IPB which
stands for Inter Processor Blocks. Tasks which are time synchronized are called
time synchronous tasks and tasks which are data synchronized are called data syn-
chronous tasks. Synchronous Services and IPB’s are only provided for the VME
Cages since they contain the tasks which deal with real time synchronous events.

Each time or data synchronous task is typically paired with some message han-
dler task. There is no additional component of CTOS to support communication
between time/data synchronous tasks and message handler tasks. This communica-
tion is typically carried out using shared memory or simply by using common global
variables on the same processor. This shared data can be polled by synchronous
tasks and simply read by data synchronous tasks when released.

An additional form of data synchronization is provided by the hardware inter-
rupts on the VME Cage processors. Most of the lower level code of CTOS is built
on interrupts.

The third paradigm, process distribution, refers to the problem of assigning
the many tasks to many different processors. A task must be compiled to run on
a Sun4 workstation (compiled for Unix) or a VME Cage Processor (compiied for
VxWorks) but not both. Once a task is compiled it can be run on any of the VME
processors or any of the Sun4 workstations. The decision as to which processor the

task will run on is made at boot time when an experiment is started. A boot strap



144

mechanism reads a configuration file which specifies where all of the tasks are to
run and then loads the tasks on the target processors. The boot strap code is also
responsible for providing an orderly means for all tasks to initialize in sequence.
This is accomplished by broadcasting initialization messages to all message handler

tasks at start up.

8.2.4 Motion Control System

CTOS provides a flexible operating for distributed real time control but know
nothing of the CIRSSE Testbed Robotic Manipulators. The Motion Control System
(MCS) fills this gap by providing the following:

e Uniform interface to the Testbed manipulators,

e Standard components for joint control, trajectory planning, etc.,

e Well defined layered structure which allows for the replacement of a standard

component for research.

A functioning MCS system is setup by specifying several MCS components in
the boot strap configuration file along with an application manager. There is a large
library of MCS components to choose from such as various joint control algorithms,
trajectory generators, hardware drivers, force controllers, etc. An application man-
ager can either be a user supplied task which will control the experiment or it can
be a standard client interface program which provides a uniform interface to all
aspects of MCS for researchers who wish to pursue research in task planning and
intelligent robotics. The client interface hides some of the details of configuration
and parameter selection.

MCS deals with slots. A slot can be a robot joint, a 6 vector of force/torque

data, or anything which requires data input and output. MCS provides components



145

for manipulating slot data and controlling devices hooked up to slots. MCS consists

of the following components:

e State Manager - The State Manager monitors and maintains the state of the
motion control system (startup, shutdown, and various other state transitions).
For more information on the various state transitions see [30]. It also provides
‘a uniform interface between the various MCS configuration components and

the client interface or application. The state manager is simply a message

handler task.

e Hardware Drivers = Hardware drivers are software libraries which simplify
the interface to some hardware device. Typically, a hardware driver provides

functions to write to, read from, and initialize a device.

e Channel Drivers — Channel Drivers use the Hardware Drivers to synchronously
access a device, like the robot manipulators. Channel Drivers are a combina-
tion of a message handler task used to communicate with the state manager
and a time synchronous task used to communicate with the hardware. There
is also communication between the time synchronous task and the message
handler. Tasks requiring synchronous access to the hardware do so using slots

which are read from and written to by the Channel Drivers.

o Controllers - Controllers are tasks which provide the computations required to
control a device through a slot. For example, the DMRAC algorithm used to
control one of the PUMA Manipulators classifies as a Controller. Controllers
consist of a message handler shell which communicates with the state manager
and a data synchronous task which is synchronized to the channel driver time

synchronous task.

o Trajectory Generators - The Trajectory Generators provide smooth trajectory

paths for slots which require it (generally only the robot joint slots).



146

e Other Components — Other components include collision detection processes

and any task which a researcher wishes to add to MCS.

All of the data exchange between various components is either by message
passing or by access to shared memory. All slot data is stored in shared memory
and is accessed by standardized shared memory libraries. The above components
may be freely distributed amongst the processors in the MCS VME Cage, thus
much parallelism can be achieved. This flexibility of distributing tasks is provided
by CTOS and easily allows processor loading to be evened out as components are
added and subtracted from MCS.

MCS and CTOS also provide many safety features such as overrun tasks which
are activated if a time synchronous task does not complete its computations within
its allotted period. This and many other features will not be discussed here, see [30]

and the references listed therein.

8.2.5 Synchronization and Data Exchange for Joint Control

Figure 8.4 shows a time diagram of the data exchange and synchronization
between a joint channel driver and a joint controller. The diagram is for a single
joint or slot for illustration purposes. Each interval is started when the synchronous
services releases or unblocks the time synchronous task in the channel driver. The
task is unblocked in this synchronous fashion on a periodic basis (every 4.5 ms for
the DMRAC experiments). This task then writes a torque® value which was stored
in shared memory to the motor controlling the slot in question. The torque value
written was calculated by the controller in the previous interval thus there is a one
interval delay added to the closed loop system.

After writing the torque, the channel driver task then reads the joint position,

stores it in shared memory (in a slot), and releases the data synchronous task in the

3MCS deals with motor torques, not link torques, so scaling by the gear ratio is required.



147

controller associated with this slot (using the IPB services described above). Recall
that the controller and the channel driver can be on separate processors.

After being released, the controller task grabs the joint position from shared
memory, calculates the desired motor torque to be applied next period, stores the
torque in shared memory, and becomes blocked. If the controller wrote the torque
value to shared memory before the channel driver needed it in the next interval,
then the cycle starts over. If the controller delayed too long, then the channel driver

will shutdown that joint.

:i— Channel Driver is Released by Sync. Services
Channel Driver Outputs Last Torque to Joint

4
4.5ms - Channel Driver Read Joint Position and Stores in Shared Mem
i Channel Driver Releases Controller using [PB

Controller Read Position from Shared Memory

Countroller Calculates Torque for Next Period and Stores it

Figure 8.4: Synchronization and Data Exchange for Joint Control

8.2.6 Additional Software

This section will describe the additional software which was added to the

CTOS/MCS collection in order to carry out the DMRAC experiments. The follow-

ing components were added:

e ctriShell - The control shell is an MCS tool which allows one to test a control
algorithm on the CIRSSE Testbed with minimal interfacing work. The re-
quired data synchronous task and message handler task are provided already.

To complete the controller, one simply writes the code which calculates the

control law.



148

e traj- Traj is minimum jerk trajectory generator using the same algorithm as
described in Section 3.5. This trajectory generator runs in the control shell
and thus does not require a message handler and synchronous task as would

a full blown MCS trajectory generator.

e app - App is the application which controls the DMRAC experiments. By
using CTOS, app allows the experiments to be easily controlled from a Sun4

Workstation.

o datalogLib - datalogLib is a data logging library which interfaces with MCS
to allow for high speed data collection within time/data synchronous tasks.

This library also has the capability to upload the collected data from the MCS

Cage to a Sun4 Workstation for graphical display*.

e matrizLib - matrixLib is a generic linear algebra package designed to run in
real time. It operates on arbitrarily sized matrices and is used extensively in

the DMRAC code.

Because of the flexible and modular nature of MCS and CTOS, the creation and
integration of the above additional components with the existing MCS/CTOS code

was straightforward and easily accomplished.

8.2.7 Task Distribution

Table 8.2 shows the tasks and libraries as they were distributed amongst the
MCS VME processors where the first grouping in the table is the CTOS tasks and the
second grouping is the MCS tasks. Table 8.3 shows the tasks which were running
on the Sun4 Chassis where the first grouping is the CTOS tasks and the second
grouping is the custom tasks added for the data logging. The below distribution
was specified in a CTOS config file. Note: At the time of the experimental runs, the

4The data is converted into a format which Matlab can read and display.



149

Table 8.2: Distribution of Libraries and Tasks Amongst the MCS Pro-

cessors
cpu0 cpul cpu 2 cpu 4 cpu 5
(68030) (68020) ~ (68020) - (68030) (68030)
btsErrorSvr | T
btsMsgSvr btsMsgSvr btsMsgSvr btsMsgSvr btsMsgSvr
btsCtosSvr btsCtosSvr btsCtosSvr btsCtosSvr btsCtosSvr
'8yncP0 syncLsph syncLsph syncLsph syncLsph
btsMsgRelay
btsBCSvr
tidServer tidServer tidServer tidServer tidServer
msgDispatcher® | msgDispatcher™ | msgDispatcher™ | msgDispatcher® | msgDispatcher”
socketServer™ socketServer” socketServer® socketServer* socketServer®
chasSocketSrv* L
csLib mcsLib mesLib mecsLib csLib
anLib chanLib chanLib chanLib chanLib
interpLib interpLib interpLib interpLib interpLib
configLib configLib configLib configLib configLib
matrixLib matrixLib matrixLib matrixLib matrixLib
datalogLib datalogLib datalogLib datalogLib datalogLib
application gripLib gripLib
stateManager gripUser channelDriver ctriShell

* = Non CTOS Task.
ction Library, not a Task.

underline = Fun

MCS processor number 3 was being repaired, thus the omission in Table 8.2. Some

of the names listed in Tables 8.2 and 8.3 were abbreviated to fit in the columns.

Also, some of the tasks shown in the tables were not described in the preceding

sections but were included for completeness.

8.3 Hardware Implementation Issues

This section will discuss some of the issued related to running the DMRAC

algorithm on the actual testbed hardware. These issues include deriving the joint

velocity data and addressing the computational complexity of the fully centralized
DMRAC algorithm.




150

Table 8.3: Distribution of Tasks on Sun4 Chassis

bootstrap®
msgDispatcher”
tidServer
msgServer
btsSequencer
recServer
msgBroadcast

| datalogServer I

8.3.1 Deriving Velocity Information from Position Data

* = Non CTOS Task.

Recall that the DMRAC algorithm with the plant output derivatives weights,
@, requires a joint velocity signra.l. As was mentioned earlier, the PUMA 560 robot
used in the CIRSSE Testbed is not instrumented with joint tachometers, thus the ve-
locity information must be derived from the position encoder data. This is achieved

by forming a backwards difference from the position data as follows:

8.(kT) - 6;(kT — T)
T

where T is the sampling period, i is the joint number, 6; is the i** joint position,

vi(kT) = (8.1)

and v; is the derived velocity signal for Joint i. One problem with this velocity
derivation method is that it magnifies the position noise by a factor of (1/T) which
yields a value of 222.2 with the DMRAC sample period of T = 4.5 ms. In order to

remove some of this noise, a simple first order filter of the form,

. _ W Tv(kT) + vi(kT - T)
v']ilccrcd - wcT + 1'0

was used where v; ..., is the filtered velocity for Joint 7, w. is the cut off frequency

(8.2)

of the filter, T is the sample time, and v; is the unfiltered velocity signal. The cut
off frequency was set to w, = 125 rad/sec, which was approximately one tenth the

sampling frequency, which gave good results.



151

One other problem introduced by this backwards differencing is spike noise.
The encoder values in the Unimation Controller are updated every 0.9 ms® and read
every 4.5 ms by the channel drivers. It turns out that the channel driver sampling
period is only 4.5 ms on the average and can deviate £10% at times. This deviation
will cause spikes to appear in the backwards differenced velocity signal because the
difference is always divided by a constant 4.5 ms even though the period varies

around 4.5 ms.

8.3.2 DMRAC Computation Complexity

Because of the centralized nature of the DMRAC algorithm, a full six joint
centralized DMRAC control of a PUMA was too numerically intensive to be run on
a single processor on the MCS system. The version of MCS used for the DMRAC
experiments did not support the ability to easily parallelize a controller (i.e. spread
it out over many processors). There were two solutions to this problem. One was
to run at a slower sampling rate to allow the DMRAC algorithm more time and the
other was to control a smaller subset of the joints. To run all six joints, a sampling
rate of 10 — 15 ms was required. At this slow rate, the DMRAC algorithm was
unable to effectively control the arm. With this in mind, the results presented in
this paper will be for the first three joints (1-3) of the PUMA at a sampling interval

of 4.5 ms (same as used in the simulation runs).

8.4 Summary

In this chapter we introduced the hardware and software components com-
prising the CIRSSE Testbed. The hardware used for the DMRAC exerpiments in-
cluded the PUMA 560 Manipulator, the Unimate controller, the MCS Cage, and the
CIRSSE Computing Network. The software used included the multi-tasking Unix

SBecause of this fact, the sampling period was chosen to be a multiple of 0.9 ms, i.e. 4.5 ms.



152

an VxWorks operating systems, the CTOS operating system, the Motion Control
System, and some additional software needed for the DMRAC experiments. Also
discussed in this chapter were some hardware implementation issues regarding the

DMRAC computational complexity and the deriving of joint velocity information.



CHAPTER 9

Experimental Results

An actual PUMA 560 Manipulator was controlled using the DMRAC algorithm on
the CIRSSE Testbed. This chapter will present the results of these experiments.
The tuning parameter values used for all of the experimental runs are listed in
Table 9.1 and are very similar to the gains used in the simulation runs. Details of
the intermediate results during the tuning process will not be discussed. The tuning
process is the same as that described in Section 4.1. All results will be displayed

with the bias term, ¢yi.s removed (see Section 2.7).

9.1 Three Joint Trajectory Tracking

This section will investigate the ability of a DMRAC controlled PUMA 560
to track two different three joint trajectories. In each case, the robot will start at
the shutdown position and follow a trajectory which finished back at the shutdown

position.

9.1.1 First Trajectory

The first trajectory is listed in Table 9.2 and is illustrated by Figure 9.1 where
the numbered positions refer to the knot points in the table. This trajectory is very
similar to the one used in the simulation (Section 5.1.1). The arm first moves to a
straight up position, curls up. and then moves back to the safe position. The wrist
joints remain locked in their shutdown positions of {0.0,45.0,90.0} degrees.

The response to the first trajectory is shown in Figure 9.2. The response is
quite good. The effects of stiction can be seen on Joint 2 at t = 15seconds in
Figure 9.2(b). Figures 9.3-9.5 show the model following error and the link torques

for Joints 1, 2, and 3 respectively. Figure 9.3(b) shows that the Joint 1 torque signal

153



154

Table 9.1: Parameter Values for 3 Joint Trajectory Tracking Runs

Tyro “e.” | 20 40 40
(diag “z2a" | 140 20 200
component) 30 200 30
“un” | 140 200 200

Tine “e,” | 30 60 40
(diag “Tm” | 200 30 400
component) 60 400 60
i “um" | 200 400 400

joint 1 2 3

Model wy 10 10 10

¢ 1 1 1

Feed Ky 6 6 6
Forward r |0.05 0.05 0.05
alpha a |0.02 002 0.02

Table 9.2: First Three Joint Tracking Test Trajectory

Knot || Joint Positions (deg) || Time

Point || 1 l 2 ] 3 " (sec)

0 [0 [-45] 180 -
1 [[-90[-90] 90 6
2 |00 130 3
3 | 0 [-45] 130 5

was quite noisy. This noise did not have a physically detectable effect on the actual
arm motion. Typically one can feel or hear a noisy torque signal on the actual arm.
The peak tracking errors for the three joints are listed in Table 9.3.

The stiction effect mentioned above for Joint 2 can also be seen in Figure 9.4(a)
at t = 15sec near the ‘X’ at the peak error location. When stiction grabs a joint,

the error ramps up as does the torque (Figure 9.4(b)).

9.1.2 Second Trajectory

The second trajectory is listed in Table 9.4 and is illustrated by Figure 9.6.

The arm first moves to an upright L position, stretches out horizontally, and then



Figure 9.1: First Three Joint Tracking Test Trajectory

0 (a) Joint 1 yp and ym 0 (b) Joint 2 yp and ym
20k A - 204 -
{ « ; { « ;
_80 \ [ _80 koo \ / ........ -
A\  ;
-100 i -100 i
0 10 20 30 0 10 20 30
tme, sec time, sec
200 {c) Joint 3 yp and Ym ,
o H T
]
o
-8 ._
0 .
0 10 20 30

Figure 9.2: Plant and Model Output for First Trajectory. (a) Joint 1.
(b) Joint 2. (c) Joint 3.



156

1 (a) Joint ,l, Model Followgpg Error
ost . ]
} o
05
1o s 10 T:s 20 25

time, seconds

20 y (b) Joint 1, Link Togg: ue

torque, Nm

(

0 5 ) 10 15 20 25
) time, seconds

Figure 9.3: Joint 1 Data for First Trajectory. (a) Model following er-
ror. (b) Joint Torque.

(a) Joim!?.. Mode! Following Error

05 ; H i H
0 5 10 15 20 25

lime, seconds
®) 'Joim 2, Link Tor_que

Flgure 9.4: Joint 2 Data for First Trajectory. (a) Model following er-
ror. (b) Joint Torque. -



-1

(a) Joint 3, Model Following Error

oo Z N

3 i H i H
0 5 10 15 20 25
time, seconds

(b) YJ“-‘#i!'l!» 3, Link Torgue

Figure 9.5: Joint 3 Data for First Trajectory. (a) Model following er-
ror. (b) Joint Torque.

Table 9.3: First Trajectory Peak Tracking Errors

Joint | Peak Error (degrees)

1 0.6033
2 1.1233
3 -2.2892




158

Table 9.4: Second Three Joint Tracking Test Trajectory

Knot || Joint Positions (deg) | Time
| Point || 1 | 2 | 3 | (sec)
0 Jo]-45 130 |

1 || 45]-90] 180 5
2 [45[ 0 90 8
3 || 0-45] 180 7

Table 9.5: Second Trajectory Peak Tracking Errors

Joint | Peak Error (degrees)
1 0.4437

2 1.8734

3 -3.6948

moves back to the safe position. The wrist joints remain locked in their shutdown
positions of {0.0,45.0,90.0} degrees.

The response to the second trajectory is shown in Figure 9.7. The response is
acceptable. Again, there are stiction effects visible in Joints 2 and 3 near ¢t = 15sec.
Figures 9.8-9.10 show the model following error and the link torques for Joints 1,
2, and 3 respectively. The *X's in Figures 9.9 and 9.10 show where the stiction
force is exceeded. Also visible in the two figures is a steady state error beginning
at t = 20seconds. Notice how the torque slowly winds up from 20 < ¢t < 25. If the
experiment was continued, eventually the torque would windup to a point where
the stiction would break and then “re-stick™ causing a slow limit cycle. The peak
tracking errors for the three joints are listed in Table 9.5. As with the previous case,

the peak errors were caused by torque windup due to stiction in the joints.

9.2 Static Load Changes

This section will test the ability of the DMRAC algorithm to adjust to static
load variations. The same trajectory will be run with different loads in the gripper.

The algorithm will first be allowed to adjust to the load and then the trajectory will



139

03

r—‘\

(a)

®

Figure 9.6: Second Three Joint Tracking Test Trajectory

50 (a) Joint 1 yp and ym -

pos, deg
8

pos, deg

100

50
0

{b) Joint 2 yp and ym

Figure 9.7: Plant and Model Output for Second Trajectory. (a) Joint
1. (b) Joint 2. (c) Joint 3.



160

(a) Joint 1, Model Following Error

04k oo ST ]
0.2
g‘ 0 5
RN —
.040 S lIO ILS = .
time, scconds
20 (b) Joint 1, Link Torgue

0 5 . 10 15 20 25
: time, seconds

Figure 9.8: Joint 1 Data for Second Trajectory. (a) Model following
error. (b) Joint Torque.

(a) Joint 2, Model| Following Error

0 5 10 15 20 25
time, seconds

(b)yJoim 2, Link Torque

i

torque, Nm
8
.

5 }0 15 20
time, seconds

Flgure 9.9: Joint 2 Data for Second Trajectory. (a) Model followmg
error. (b) Joint Torque.



161

2 . (a) Joint 3, Model Following Error .

0 5 10 15 20 25
o ) time, seconds
0 (b) Joint 3, Link Torque .
- Ia
§. M_/
= 30
-40 i H i
5 . 10 15 20 25
. time, seconds

Figure 9.10: Joint 3 Data for Second Trajectory. (a) Model following
error. (b) Joint Torque.

be started. The trajectory used is listed in Table 9.6 and is illustrated in Figure 9.11.
The wrist joints remained locked in their shutdown positions of {0.0,45.0,90.0}
degrees. Five different loads were run for the trajectory - Okg, 1kg, 2kg, 3kg, and
4kg.

Figures 9.12 and 9.13 show the response for Joints 2 and 3 respectively. The
numbers on the plots are to help identify which curve represents which payload.
For Joint 3, the peak errors vary from 2.4390 degrees for the no load case to 3.9972
degrees for the 4kg load case. The load changes make up only about 50% of the
error. The other 50% is due to the adaptation to the changing arm dynamics. For
Joint 2, the peak errors are around 0.8 - 1.0 degrees. As with Joint 3, the portion of
the error due to the load change for Joint 2 is small compared to the no load case.
Note: It is not so important to distinguish each individual error trace as it is the

gee the trend as the load is changed.



Table 9.6: Static Load Change Trajectory

Knot [| Joint Positions (deg) || Time
| Point || 1 ]| 2 3 (sec)
0 Jo]-45 180 -

1 0 |-45 180 3
3 4] 0 0| 10
3 0 |-45 180 10

For Joint 1, the error signals did not vary by more than 0.1 degrees between
the five different load cases. Figure 9.14 shows the model following error for the 4kg
load case.

The joint torque signals for Joint 2 are shown in Figure 9.15. Figure 9.16(b)
shows the torque signal for the 4kg load for Joint 3. Notice the spikes in the torque

signal which are caused by the backwards differencing process used to derive the

velocity information (Section 8.3.1).

0,13

(8 (b)

Figure 9.11: Static Load Change Trajectory



163

Joint 2, Mode! Following Errors

1.2

degrees

time, sec

Figure 9.12: Joint 2 Static Load Model Following Error

Joint 3, Model Following
5 : T T

degrees

time, sec

Figure 9.13: Joint 3 Static Load Model Following Error



Joint 1, Model Following Error for 4kg Case

0.4

T

0.3

0.2

0.1

B ) T 3 .............E.. —

03 i i .

time, sec

164

Figure 9.14: Joint 1 Static Load Model Following Error for 4kg Case

Only

Joint 2, Link Torque
-0 ; T ; ;

time, sec

Figure 9.15: Joint 2 Static Load Torque Signal



(a) Joint I3. Mode! Following Error

fv/\_‘/_/‘"

5 10 15 20 25
time, seconds

(b) Joint 3, Link Torque

degrees

OLNQN

.z: /‘f ™\
E_ 40___ ] // \h’/v\
; © NS |

time, seconds

Figure 9.16: Joint 3 Static Load Torque Signal for 4kg Load. (a) Model
following error. (b) Joint Torque.

9.3 Dynamic Load Changes

* This section will test the ability of the DMRAC algorithm to adjust to dynamic
load variations. While running the same trajectory, various loads will be added to
the gripper while the robot is in motion. The same loads used in the previous
section were employed. The trajectory used is listed in Table 9.7 and is illustrated
in Figure 9.17. The wrist joints remained locked in their shutdown positions of
{0.0,45.0,90.0} degrees. Note: The 1kg and 4kg loads were added at about ¢ = 6.76
seconds and the 2kg and 3kg loads were added at about ¢t = 7.34 sec.

, Figure 9.18 shows the model following error for Joint 2 for all of the loads.
The numbers on the graph indicate which peaks in the error plots match up with
the various loads. This figure shows that the DMRAC algorithm has a good load
disturbance rejection. The transient period only lasts about 2 seconds.. '];‘he peak
errors at the time of the load addition are listed in Table 9.8.



166

Table 9.7: Dynamic Load Change Trajectory

Knot || Joint Positions (deg) || Time
Point || 1 | 2 3 (sec)
0 [ 0]45] 180 -
T | 0 [45] 180 3
2 45 | -90 90 10
3 0 |-45 180 10

Table 9.8: Joint 2 Peak Errors for Dynamic Load Case
Peak Error at Time of Load Addition (degrees) |

0 -0.0018
1 0.3651
2 0.5712
3 0.7690
4 1.2843

Figure 9.19 shows the error for Joint 3 for the various loads. Joint 3 suffers
more with a load disturbance having a peak error of almost 5 degrees when the 4kg
load is added. Again, the transient period is roughly 2 seconds. After the transient,
good tracking performance is achieved with the additional loads. Table 9.9 lists the
peak errors at the time of the load additions.

As with the static load case, the model following errors for Joint 1 did not vary
by more than 0.1 degrees. Figure 9.20 shows the worst Joint 1 tracking error which
occurred with the 4kg load. The peak tracking errors for Joint 1 are all within a
quarter of a degree.

The worst case errors resulted from the 4kg weight. Figure 9.21 shows the
plant (solid line) and model (dashed line) outputs for this 4kg load case.

9.4 Other Testbed Runs

This section will investigate two more runs on the hardware. The first run

was to show the effects of stiction on steady state error. The second run was to



167

013

® ®)

Figure 9.17: Dynamic Load Change Trajectory

Joint 2, Model Following Exrors

14
4

1.2

G

0.8

(1.1 No—

degrees

04 b Lk

0.2

0.4

0.6

_ Figure 9.18: Joint 2 Dynamic Load Model Following Errors



168

Joint 3, Model Following Errors

5
4
4
3 3
3 )
i
g 2 I ‘f ;
& !
3 1 A ¥
A 0
Ok
-1
-2
0 5 10 15 20 25

Figure 9.19: Joint 3 Dynamic Load Model Following Errors

Table 9.9: Joint 3 Peak Errors for Dynamic Load Case

[ Load (kg) [ Peak Error at Time of Load Addition (degrees) |
0.8583

1.8683

2.7772

3.3544

4.6962




169

Joint 1, Model Following Ermor for 4kg Load

0.25

0.2

0.15 fl
0.1 I

\¥
0.05 1 !
01
0.15 ‘
0.2 y
'o'?"o 5 10 15 20 25
time, sec

Figure 9.20: Joint 1 Dynamic Load Model Following Error for 4kg Load

50 (a)Ioimlypam_:lm 40 (b) Joint 2 yp and ym ‘
40 £\ el .50—\ o -
§ o\ g b\ /
e I /L VI I N I VI
ol i\ w [
oL/ N " \ /|
0 10 20 30 0 10 20 30
200 mmznm
150j f_
3 :
1T\ /
& 100
0 10 20 30

Figure 9.21: Plant and Model Outputs for 4kg Dynamic Load Change.
(a) Joint 1. (b) Joint 2. (c) Joint 3. o



170
investigate the disturbance rejection properties of the DMRAC algorithm.

9.4.1 Stiction Effects on Steady State Model Following Error

For this run, the arm was started in the shutdown position and commanded
to stay in that position. Figures 9.22-9.24 show the model following error and the
joint forque signal for Joints 1, 2, and 3 respectively. The error peak present on all
joints for the first 5 seconds of the run were caused by the joints not being exactly at
the shutdown position. The trajectory generator moved the robot from its starting
position to the shutdown position along a 3 second minimum jerk trajectory segment
causing the error peak.

Figure 9.22(a) shows the stiction breaking at t = 25.9 sec. Prior to the
break in stiction, the torque signal ramps up due to the negative steady-state error,
Figure 9.22(b), and then ramps down after the break due to a positive error caused
by the joint sticking again. Figure 9.23(a) shows a stair-step release-grab sequence
starting at ¢ = 15 sec. It is obvious that stiction causes long limit cycles in this
implementation. To determine the cycle period, much longer runs would need to be
logged.

When a steady-state error exists, the integral portion of the K, adaptive gain
will ramp up because it is formed by the weighted product of e,e,. Thus, because of
stiction there is a persistent steady-state error which will cause K. to slowly build
up. This was not a problem due to the short duration of the experiments. For longer

experiments, the integral terms in K, should be periodically reset.

9.4.2 Disturbance Rejection

This section will investigate the disturbance rejection abilities of the DMRAC
algorithm. As in the previous section, the arm was commanded to stay at the

shutdown position. After the run was started, Joints 1, 2, and 3 were disturbed in



(a) Joint 1, Modei Following Error

0.08 :

0.06F SR S J
g 004 :
& 002 \

002 i ; ;P

0 10 20 30 40 50 60 70 80 90
time, seconds
s (b) Joint 1, Link Torque
\\

torque, Nm
/

10 20 30 40 50 60 70 80 90
time, seconds

Figure 9.22: Joint 1 Stiction Effects. (a) Model following error.

Joint torque.

o5 (a) Joint 2, Model Following Eyror__
0.1 -[\}
2 o0s
3
0
0.05 i i i A i i
0 10 20 30 40 50 60 70 80 90
time, seconds

1005 10 20 30 40 50 60 70 80 90
time, seconds

Figure 9.23: Joint 2 Stiction Effects. (a) Model following error.

Joint torque.

171

(b)

(b)



172

0.3 . (a) Joint 3, Model Following Error ,
g o1 - S F—
3 ;
0 : :
0.1 i i i i
10 20 30 40 50 60 70 80 90
time, seconds
24 (b) Joint 3, Link Torque
26 4
5 h . _—
Z 28 -
g. 3 //
.32 'V M :
34 ; i i i
0 10 20 30 40 50 60 70 80 90
time, seconds

Figure 9.24: Joint 3 Stiction Effects. (a) Model following error. (b)
Joint torque.

Table 9.10: Times of Disturbance Application

[ Joint | Time of Application of Disturbance |
4.6566
8.5904
11.7196

QI N

succession by pushing hard on the manipulator. Table 9.10 shows the times that
the disturbances were applied to the joints.

Figure 9.25 shows the tracking performance with the disturbances. For all
joints, there was a fast recovery with a fast over shoot followed by a decay back
to steady-state. The algorithm also does a good job of isolating the disturbances

from the other joints. Figures 9.26-9.28 show the model following error and torque

signals for the individual joints.



173

(a) J?inl 1 mangjm 40 (b)]m'mzy'panfi ym

S : 45t

pos, deg

WO rbsetoleyiel § Ll

pos, deg

‘6 . M
0 10 20 30
time, sec time, sec

3
8
8

(c) Joint 3 yp and ym

Figure 9.25: Disturbance Rejection Run. (a) Joint 1 position. (b) Joint
2 position. (c) Joint 3 position.

(a) Joint 1 Model Following Error

4
2k e .. N o o R - : H .
g o :
& :
2 2 ;
5 i : i ;
0 5 10 15 20 25
time, seconds
300 M:Toim 1, Link Tor_que
E :
E o
200 ; ; ;
0 ] 10 15 20 25
time, scconds

Figure 9.26: Joint 1 Response to Disturbance Rejection Run. (a) Model
following error. (b) Joint torque. o



torque, Nm

174

(a) Joimlzl Mode! Following Error

+

i

1

10 15
time, seconds

(b) Joint 2, Link Torguc

10 15
time, seconds

Figure 9.27: Joint 2 Response to Disturbance Rejection Run. (a) Model

torque, Nm

Figure 9.28: Joint 3 Response to Disturbance Rejection Run. (a) Model
following error. (b) Joint torque. o

following error. (b) Joint torque.

10

(a) Joint 3, Model Following Error

10 15
time, seconds

®) !J oint 3, Link Torguc

10 15
time, seconds



175

9.5 Summary

This chapter presented the experimental results from the Direct Model Refer-
ence Adaptive Control of a PUMA 560 in the CIRSSE Testbed. First, the robot was
controlled along two three-joint trajectories with acceptable tracking errors. Next,
the robot was controlled in the presence of static and dynamic load changes. The
DMRAC algorithm adapted quite well to these load changes. It was found that the
effects of stiction had the most dramatic effect on the model following error typically
causing over 50 % of the tracking error due to integral wind-up. Next, the stiction
effects on the steady state error were investigated. F inally, the DMRA controlled

PUMA was subjected to some disturbances which were handled nicely.



CHAPTER 10

Conclusions and Future Research

10.1 Summary and Conclusions

This project dealt with the control of a PUMA 560 Robotic Manipulator using
a Direct Model Reference Adaptive Controller scheme. We first discussed the bene-
fits of using a DMRAC algorithm some of which were an asymptotically zero output
error, bounded states, multiple input-multiple output plant support, and the fact
that adaptive observers and full state feedback are not required. Then the history of
the DMRAC algorithm was briefly presented beginning with the basic algorithm of
Sobel, Kaufman, and Mabius [9] and proceeding to the Kaufman, Neat, and Stein-
vorth algorithm [5]. The goal of the project was then stated which was to test the
ability of a DMRAC algorithm to control a PUMA 560 robot with an interest in the
ability to adapt to sudden load changes.

We then proceeded to present to development of the DMRAC algorithm. First,
the motivating CGT concept was introduced which assumes that the plant param-
eters are known. These CGT concepts assume that there exists an ideal plant with
ideal state and input trajectories which occur when there is perfect reference model
output tracking. It was then shown that the control for the perfect output following
case is a linear combination of the model state and input, u, = S$31Zm + S22Um.
When perfect output following does not occur, a stabilizing output feedback was
added. The control was then seen to be. u, = S3Tm + S22um + K(¥ym — ¥p)-
This control law was then used to motivate the basic DMRAC algorithm as fol-
lows: up, = K;zZm + Kyttm + Ke(ym = yp)- where N, I\',. and A, are adapted by

(2.31)~(2.33). This basic DMRAC law will produce asymptotic output tracking if

176

-3



177

the proportional and integral weighting matrices in (2.31)-(2.33) are positive semi-
definite and positive definite, respectively, and the plant under control is Almost
Strictly Positive Real.

The ASPR condition on the plant can be restrictive, so BarKKana and Kaufman
proposed augmenting non-ASPR plants with supplemental feed-forward dynamics
such that the augmented plant becomes ASPR and the above results hold for the
augmented output. Unfortunately, a steady-state error will be present for plants
which are not high gain feedback stabilizable. To remedy this, Kaufman, Neat, and
Steinvorth proposed augmenting the model dynamics with the same feed-forward
filter, thus eliminating the steady-state error.

Some further modifications to the Kaufman, Neat, and Steinvorth algorithm
were to inject a weighted plant output derivative term into the plant output sig-
nal. This had the effect of damping out some high frequency oscillations at the
expense of a slightly increased tracking error during transients. Also, a bias term
was subtracted from the plant output and the model input to effectively shift the
coordinate system and thus provide excitation for the adaptation process through-
out the range of interest. The bias addition is necessary when the state space origin
is not an equilibrium, as with the control of some non-linear plants. The algorithm
was then discretized for simulation and implementation on the CIRSSE Testbed.
The feed-forward and reference model dynamics were discretized exactly while the
adaptation mechanism was discretized using backwards rectangular integration.

We then described the simulation environment which was used to test the
DMRAC algorithm before it was implemented on the actual robot. We detailed the
sequence of execution for the simulation and discussed the creation of an accurate

simulation model of the PUMA 560. A minimum jerk trajectory generator was also

discussed.

Next, a tuning process was described and carried out on the PUMA 560 in



simulation. The process consisted of beginning with a default set of tuning parame-
ters and simulating small step inputs with the plant initially at an equilibrium. The
tuning parameters were changed until a satisfactory step response was obtained at
which time the parameters were fine-tuned using typical reference inputs.

Once tuned, the algorithm was used to control the simulated PUMA 560. The

. simulations were run with trajectories which subjected each joint to its extreme

operating conditions such as maximum/minimum inertia seen at the joint and max-
imum/minimum gravity loading. The response of each joint to these trajectories was
quite satisfactory. The peak errors for the first three joints were typically within
+ 2.0 degrees with the average error within about + 1.0 degree. For the wrist, the
peak error were typically within £ 1.0 degree.

We next controlled the simulated robot over three typical minimum jerk six-
joint trajectories. The peak model following errors were typically between 1.8 and
0.3 degrees. The torque signals were smooth and bounded. For the third trajectory,
the Joint 6 torque signal saturated for a small time interval. Even with the Joint 6
command saturated. the rest of the joint signals remained bounded.

The effects of changing the tuning parameters were illustrated by stepping
through the various parameters and changing them above and below their nominal
values and comparing the simulation results. The effects of changing the adaptive
weighting matrices was shown and it was noted that the weights associated with
the reference model state vector and input had the greatest affect on the tracking
performance. The reference model undamped natural frequency was adjusted show-
ing the trade off between error signal overshoot and settling time. The effects of
changing the feed-forward filter parameters was illustrated. It was also shown how
the plant output derivative term weights are used to damp out any high frequency
oscillations which may be present in control signals. It was noted that adjusting

these output derivative weights too high will actually produce oscillations and cause



179

instability. Finally, the effects of removing the model and/or plant feed-forward
dynamics was investigated. Removal of the model feed-forward term resulted in
a process which was very difficult to tune. Removal of both feed-forward terms
from the plant and model added oscillations into the response but still produced an
acceptable performance.

' .The ability of the DMRAC algorithm to adjust for load variations was then
investigated. Two types of load variations were considered, static and dynamic.
The static load variation simulations allowed the algorithm to adapt to the load
and then applied a typical trajectory to the arm which tested the ability of the
DMRAC algorithm to control a loaded down manipulator without the transient
effects. The response to the static load cases was quite encouraging. It was found
that the added load mass had a small affect on the tracking performance for all
joints except Joint 2 which sees the highest inertia and gravity change. It was found
-~ that the change in the gravity loading caused by the load had a larger affect on the
error then the change in the inertia loading. The dynamic load variation simulations
investigated the ability of the DMRAC algorithm to compensate for a sudden load
change occurring while the robot was in motion. It was found that the algorithm
had well behaved asymptotic tracking capabilities in the presence of load changes.
The torque signals all remained bounded.

One problem with the DMRAC algorithm is that the reference model typically
introduces a lag between the model input and the model output, thus, the trajectory
tracking error (y, —u,) may be vary large. Two methods to over come this problem
were investigated. The first involved adding dynamics between the trajectory gen-
erator and the reference model which forced the model output to match the desired
trajectory. The second method involved increasing the speed of the reference model
such that the lag was reduced to some acceptable value. Both methods produced

acceptable results. Typical trajectory tracking errors were reduced by about 30



180

From the above simulation results, we gained confidence that the DMRAC
algorithm could be an effective controller for the PUMA 560 Manipulator. We then
proceeded to describe the CIRSSE Testbed environment which would be used to
test the DMRAC algorithm on an actual PUMA Manipulator. The hardware and
software components of the testbed were discussed along with some implementation
issues. Due to the computational complexity of the algorithm and the existing
hardware setup, only three joints of the PUMA could be controlled in real time.
The first three joints of the PUMA were selected since they see the largest changes
in inertia and gravity loading from a mass held in the manipulator gripper.

The DMRAC controlled PUMA was commanded over some typical three-joint
minimum jerk trajectories with much success. The peak tracking error remained
within about + 1.5 degrees except where stiction effects caused the integral term to
windup producing 2-4 degree peak errors.

The effects of disturbances were also investigated. The PUMA manipulator
was physically disturbed from a setpoint to test the disturbance rejection capabilities
of the DMRAC algorithm. In all cases, the algorithm recovered from the disturbance
within about 1.5 seconds with a sharp decay back to steady-state. All torque signals
remained bounded. The effects of stiction in the joints was also investigated. It was
observed that the interaction between the joint stiction and the integral terms in
the adaptation law produced slow limit cycles of small amplitude.

The DMRAC controlled PUMA was subjected to static load variations with
great success. The effects of the load changes were quite small on the model follow-
ing errors. The system was also subjected to dynamics load variations with equal
success. The worst peak errors for the dynamics load runs were around 3 degrees
and decayed to the nominal no load values within about 2 seconds. It was shown

that the DMRAC algorithm was very robust in the presence of load changes.



181

In summary, the DMRAC algorithm was found to be an effective robotic con-
trol algorithm in both simulation and on the actual robotic manipulator being robust

to static and dynamic load variations and also disturbances.

10.2 Future Research

' VA logical extension of this work would be to control all six joints of the ac-
tual PUMA 560 Manipulator. The existing version of the Testbed Motion Control
System did not easily support a distributed controller. Recently proposed enhance-
ments to MCS call for the support of distributed controllers, thus it will be possible
to easily control all six joints of the PUMA with two DMRAC algorithms running,
one for the wrist joints and. one for the first three arm joints. The ability to control
six joints in a fully centralized fashion will require increased computing power in
the MCS VME Cage. One way to get this increased power might be to incorporate
transputers into the MCS cage. Another method for achieving a centralized six joint
controller would be to calculate the gain adaptation updates at a lower frequency
than the control servo rate. With the addition of distributed controllers to MCS,
this method will be easy to investigate.

One other area of future work involves the tuning and selection of tuning pa-
rameters. The algorithms used in this project were tuned by a very time consuming
method of repeated runs with parameter adjustment between each run. If we assume
we know nothing about the plant parameters then an automated tuning procedure
could be designed. If we have some information regarding the plant parameters

then a set of tuning rules could be developed to reduce the time needed to tune a

DMRAC algorithm.



LITERATURE CITED

[1] R. J. Schilling, Fundamentals of Robotics, Analysis and Control. New Jersey:
Prentice Hall, 1990.

[2] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control.
Cambridge, Mass.: The MIT Press, 1931.

(3] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing,
Vision, and Intelligence. McGraw-Hill Book Company, 1987.

[4] J. J. Craig, Introduction to Robotics, Mechanics & Control. Reading, Mass.:
Addison-Wesley, 1986.

[5] H. Kaufman, G. W. Neat, and R. Steinvorth, “Asymptotically stable multiple
input multiple output direct model reference adaptive controller for processes
not necessarily satisfying a positive real constraint,” in Proc. of European
Control Conference, (Grenoble, France), July 1991.

[6] K. M. Sobel and H. Kaufman, “Direct model reference adaptive control of a
class of MIMO systems,” in Advances in Control and Dynamic Systems (C. T.
Leondes, ed.), vol. 24, pp. 245-314, Academic Press, 1986.

[7] 1. D. Landau, “A survey of model reference adaptive techniques: Theory and
applications,” Automatica, vol. 10, 1974.

[8] R. V. Monopoli, “Model reference adaptive control with an augmenteeed error
signal,” IEEE Transaction on Automatic Control, vol. AC-18, 1974.

[9] K. M. Sobel, H. Kaufman, and L. Mabius, “Implicit adaptive control for a
class of MIMO systems.” IEEE Transaction on Aerospace and Electronic
Systems, vol. AES-18, no. 5, pp. 576-590, 1932.

[10] 1. BarKana, “Adaptive control - a simplified approach.” in Advances in
Control and Dynamic Systems (C. T. Leondes. ed.). vol. 25, Academic Press,

1987.

[11] J. R. Broussard and M. J. O'Brien, “Feed-forward control to track the output
of a forced model,” in Proc. 17th IEEE Conf. Decision and Control,
pp. 1149-1155, Jan. 1979.

[12] L BarKana and H. Kaufman, *Robust simplified adaptive control for a class
of multivariable continuous systems.” in Proc. 2{th IEEE Conf. Decision and
Control, (Ft. Lauderdale, Florida). pp. 141-146, 1985.

182



[13] I. BarKana and H. Kaufman, “Global stability and performance of a
simplified adaptive control algorithm,” International Journal of Control,
vol. 42, no. 6, pp. 1491-1505, 1985.

[14] G. W. Neat, H. Kaufman, and S. R., “Corﬁparison and extension of a direct
model reference adaptive control procedure.” Under Review by International
Journal of Control, 1992.

[15] R. Steinvorth, “Model reference adaptive control of robots,” Master’s thesis,
Rensselaer Polytechnic Institute, Troy, NY, 1991.

[16] S. T. Cummings, D. C. Swift, and K. H., “Direct model reference adaptive
control of a six link puma arm.” Under Review for Conference on Decision
and Control, Dec. 1992.

[17] E. Kamen, Introduction to Signals and Systems. Macmillan Publishing
Company, 1987.

(18] The MathWorks, Inc., Natick, MA, Control Systems Toolbox for use with
MATLAB, Oct. 1990.

[19] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C. Cambridge University Press, 1988.

[20] The MathWorks, Inc., Natick, MA, PRO-MATLAB User’s Guide, 1990.

[21] B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and
inertial parameters of the PUMA 360 arm,” in Proc. 1986 IEEE Robotics and
Automation Conference, (San Francisco, CA), pp. 510-518, Mar. 1986.

[22] D. Swift, “Kinematic and dynamic parameters for the testbed grippers and
loads,” CIRSSE Technical Memorandum 14 (v. 1), Rensselaer Polytechnic
Institute, Troy, NY, January 1992.

[23] J. F. Watson, III, “Testhed kinematic frames and routines,” CIRSSE
Technical Memorandum 1 (v. 2), Rensselaer Polytechnic Institute, Troy, NY,
August 1991.

[24] S. Murphy and D. Swift. "Dvnamic parameters and inverse dynamics for the
PUMA 560,” CIRSSE Technical Memorandum 13 (v. 1), Rensselaer
Polytechnic Institute, Troy, NY, January 1992.

[25] T. J. Tarn, A. K. Bejczy, H. Shuotiao, and X. Yun, “Inertia parameters of
PUMA 560 robot arm,” Robotics Laboratory Report SSM-RL-85-01,
Department of Systems Science and Mathematics, Washington University,
September 1985.



184

[26] L. S. Wilfinger, “7 DOF gravity compensation for the testbed arms,” CIRSSE
Technical Memorandum 15 (v. 1), Rensselaer Polytechnic Institute, Troy, NY,
February 1992.

[27] L. F. Shampine and M. K. Gordon, “FORTRAN double-precision ordinary
differential equation integrator,” 1978. ODE Integrator Program Down
Loaded from Sandia National Labs.

(28] L. F. Shampine, M. K. Gordon, and W. H. Freeman, Computer Solution of
Ordinary Differential Equations, The Initial Value Problem. San Francisco,
CA: W. H. Freeman, 1975.

[29] K. Kyriakopoulos and G. Saridis, “Minimum jerk path generation,” in
Proceedings of the 1988 IEEE International Conference on Robotics and
Automation, April 1938.

[30] K. Fieldhouse, “Lecture materials for the ctos/mcs introductory course,”
CIRSSE Report 97, Rensselaer Polytechnic Institute, Troy, NY, 1991.

[31] J. Tsai and Unimation, “The updated “breaking away from val”,” tech. rep.,
Rensselaer Polytechnic Institute, Troy, NY, Mar. 1991.

[32] B. W. Kernighan and D. M. Ritchie, The C Programming Language. New
Jersey: Prentice-Hall, Inc., 1978.

[33) Wind River Systems, Inc, 1351 Ocean Ave, Emeryville, CA 94608, VzWorks
Real-Time Operating System.



APPENDIX A
Dynamic Equations of a PUMA 560 Manipulator

This appendix will list the equations used in the modeling the PUMA 560 Manipula-
tor dynamics. Equations for the gravity loading, centrifugal matrix, coriolis matrix,
and the kinetic energy matrix will be given. The details of the use of these equations

to simulate the manipulator is described in Section 3.3.

Link and load masses in kilograms (links 2-6):

m2 = 17.4;
m3 = 4.8;

m4 = 0.82;
mS = 0.34;
mé = 0.09;

Centers of gravity in meters:

rx2 = 0.068;
ry2 = 0.006;
ry3 = -0.07;
rz2 = -0.016;
rz3d = 0.014;
rz4 = -0.019;
rzé = 0.032;

Diagonal terms of the Inertia Dyadics:

Ixx2 = 0.13;
Ixx3 = 0.066;
Ixx4 = 1.8e-3;
Ixx5S = 0.3e-3;
Ixx6 = 0.15e-3;
Iyy2 = 0.524;
Iyy3 = 0.0125;
Iyy4 = 1.8e-3;
IyyS = 0.3e-3;
Iyy6 = 0.15e-3;

185



186

Izz1 = 0.197; /* total Izzl - Iml = not about cm */
Izz2 = 0.539;

Izz3 = 0.086;

Izz4 = 1.3e-3;

Izz5 = 0.4e-3;

Izz6 = 0.04e-3;

Motor Inertias:

Imi = 1.14;
Im2 = 4.71;
Im3 = 0.827;
Im4 = 0.2;
ImS = 0.179;
Imé = 0.193;

Modified DH parameters:

a2 = 0.43182;
a3 = -0.02031;
d2 = 0.243;
d3 = -0.09391;
d4 = 0.433;

Inertial Constants:

I1, 12, 13, 14, IS, I6, I7, I8, I9, I10,
I11, I12, I13, Ii4, IS5, Ii6, I17, Ii8,
I19, 120, I21, I22, I23

Gravitational Constants:

g1, g2, g3, g4, g5
Kinetic energy (or mass) matrix (symetric).

all, ai2, ail3, ai4, aib, ais6,
a22, a23, a24, a25, a26,
a33, a34, a3b, a36,

a44, a4S5, a46,

ab5, abé,

a66



Coriolis matrix:

bi12, b1i3, bli4,
b123, b124,
b134,

b212, b213, b214,
b223, b224,
b234,

b312, b313, b31i4,
b323, b324,
b334,

b412, b413, b4i4,
b423, b424,
b434,

b512, b513, b514,
b523, b524,
bS34,

b612, b613, b614,
b623, b624,
b634,

b11S§,
b125,
b135,

b145,

b215,
b225,
b235,

b245,

b315,
b325,
b335,

b345,

b415,
b425,
b435,

b445,

b515,
b525,
b536,

b545,

b615,
b62S5,
b635,

b645,

Centrifugal matrix:

cli, cl12, ci13,
c21, <c22, c23,
c31, <32, 33,
c41l, c42, c43,
c51, ¢52, c53,
c61, c62, c63,

Gravity Terms:

ci4,
c24,
ci4,
cé44,
c54,
c64,

cifb,
c25,
c35,
c45,
c55h,
c65,

b118,
b126,
b136,
b146,
b156,
b216,
b226,
b236,
b246,
b256,
b316,
b326,
b336,
b346,
b356,
b416,
b426,
b436,
b446,
b456,
b516,
b526,
b536,
b546,
b556,
b616,
b626,
b636,
b646,
b656

cl§,
c26,
c36,
c46,
c56,
c66

187



ggl, gg2, gg3, gg4, 885, ggb

Gravity constant:

g

Sin / Cos terms:

CC2, Ss23, sC2, Ss5, CC4, SC23, C4,
scs, C€2, s23, €23, C5, S5, 54, CC23,
S2, SC4, CC5, SS4, S3, C3, 5223,
€223, 552

Inertial Constants:

I1 = Izz1l + m2*d2*d2 + (m4 + m5 + m6)*a3*a3 +
m2%rz2*rz2 + (m3 + m4 + m5 + m6)*(d2 + d3)*(d2 + d3) +
Ixx2 + Iyy3 + 2*m2*d2*rz2 + m2*ry2*ry2 + m3*rz3*rz3 +
2.0*m3%(d2 + d3)*rz3 + Izz4 + IyyS + Izz6;

I2 = Izz2 + m2*(rx2*rx2 + ry2*ry2) + (m3 + m4 + mS + m6)*a2*a2;

I3 = -Ixx2 + Iyy2 + (@3 + m4 + m5 + m6)*a2*a2 + m2*rx2*rx2 -
m2*ry2*ry2;

I4 = m2*rx2*(d2 + rz2) + m3*a2*rz3 +
(m3 + m4 + m5 + m6)*»a2+(d2 + d3);

I5 = -m3*a2*ry3 + (m4 + m5 + m6)*a2+d4 + mé*al2*rz4;

I6 = Izz3 + m3*ry3*ry3 + m4*a3+ad + mé*(d4 + rz4)*(d4 + rz4) +
Iyy4 + m5*a3*a3 + mS5xd4+d4 + Izz5 + m6+ad*a3 + m6xd4xd4 +
mb6*rz6*rz6 + Ixx6;

I7 = m3»ry3*ry3 + Ixx3 - Iyy3 + mé*rzd*rz4 + 2.0*mé*d4*rz4¢ +
(m4 + m5 + m6)*(d4*d4 - a3»a3) + Iyy4 - Izz4 + Izz5 -
Iyy5 + m6xrz6*rz6 - Izz6 + Ixx6;

I8 = -m4x(d2 + d3)*(d4 + rz4) - (m5 + m6)*(d2 + d3)=d4 +
m3*ry3*rz3 + m3*(d2 + d3)*ry3;

I9 = m2*ry2*(d2 + rz2);

I10 = 2.0*m4*ad3*rz4 + 2.0*(m¢ + m5 + m6)*a3*d4;

I11 = -2.0*m2*rx2*ry2;

112 = (m4 + m5 + m6)*a2*a3;

I13 = (m4 + mS + m6)=*a3*(d2 + d3);
114 = Izz4 + IyyS + Izz6;

I15 = m6*d4+*rz6;

116 = m6*al*rz6;

I17 = Izz5 + Ixx6 + m6*rz6*rz6;

188



I18
I19
120
I21
I22
I23

189

= m6*(d2 + d3)*rz6;

Iyy4 - Ixx4 + 1225 - Iyy5S + mé*rz6+*rz6 + Ixx6 - Iz26;
Iyy5 - Ixx5 - m6*rz6*rz6 + Izz6 - Ixx6;

Ixx4 - Iyy4 + Ixx5 - Izz5;

m6*al3*rz6;

Izz6;

Gravitational Constants:

-g*«((m3 + m4 + m5 + m6)*a2 + m2*rx2);
g*(m3*ry3 - (m4 + mS + m6)*d4 - mé*rz4) ;
g*m2*ry2;

= -gx(m4 + m5 + m6)*a3;

~g*m6*rz6;

Kinetic Energy Matrix:

all

al?2

al3

ald

alb

alé =

a22

a23

a24
a2
a26
a33
a34
a3s

Imi + I1 + I3*CC2 + I7%5S23 + I10*5C23 + I11xS5C2 +
I20*(SS5%(SS23%(1.0 + CC4) - 1.0) - 2.0%SC23%C4*SC5) +
I21%SS23%CC4 + 2.0+ (I5%C2%S23 + I12*C2*C23 + I15%(5523%C5 +
SC23#C4*S5) + I16%C2*(S23*%C5 + C23%C4*S5) + I18%S4%S5 +
T22%(SC23*C5 + CC23%C4*S5));

I4*S2 + I8*C23 + I9%*C2 + I13%523 - I15%C23%S4x*55 +
T16%52*S54*S5 + I[18%(S23%xC4#S5 ~ C23%C5) + I19%S523%5C4 +
120%S4%(S23*%C4*CC5 + C23*#SC5) + I22*S23%54x*S5;

I8*C23 + I13%S23 - I15%C23%54*S5 + I19*523*5C4 +

T18*(S2 C23*CS) + I22%523%54#S5 +

T20%S4*(S23*%C4*CC5 + C23%5C5) ;

I14%C23 + I15%523%C4*S5 + 116+#C2%C4*S5 + I18*C23*54*S5 -
T20%(S23%C4*SC5 + C23%SS5) + I22%C23*C4x*SS5;

I15%S23%54%C5 + I16*C2*S4*C5 + I17#523*54 + I18*(S23%S5 -
C23*C4*CS5) + I22%C23#%S4x=C5;

I23%(C23%C5 - S23%C4xS5);

Im2 + I2 + I6 + I20%SS4*SS5 + I21%SS4 + 2.0*(I5*S3 + I12%C3 +
T15%C5 + T16*(S3*C5 + C3*C4#S5) + I22*C4*S5);

I5%S3 + 16 + I12%C3 +I16%(S3%C5 + C3*C4+S5) + I20*554*SS5 +
I21%S54 + 2.0*(I15%C5 + 122%C4%S5);

-I115%S4%S5 - I16#S3%54*55 + 120*S4=5C5;

T15%C4%C5 + I16%(C3#S5 + S3%C4*C5) + I17%C4 + I22%S5;
I23%S4x%S5;

Im3 + I6 + I20%S54#SS5 + I21%SS4 + 2.0%(I15%CS + I22%C4*S5);
=J15%54%S5 + I120%S54=*SCS;

I15%C4%C5 + I17%C4 + I22%S5;



190

a36 = I123%54x%S5;

a44 = Im4 + 114 - T20=SS5;
a4 = 0.0;

a46 = I23=CS;

a5 = ImS + I17;

a56 = 0.0;

a66 = Im6 + 123;

Coriolis Matrix:

b112 = 2.0%(-I3%SC2 + I5%C223 + I7%5C23 - I12%S223 +

T15%(2.0%SC23*CS + (1.0 - 2.0%S523)*C4%S5) + I16%(C223*C5 ~

§223*C4*S5) + I21*SC23%CC4 + I20%((1.0 + CC4)*SC23*SS5 -

(1.0 - 2.0%S523)*C4*SC5) + I22*((1.0 - 2.0%5523)%C5 -

2.0%SC23*C4%S5)) + I10*(1.0 - 2.0%5523) + I11%(1.0 -

2.0%S52);

2.0%(I5*C2%C23 + I7*SC23 - I12%C2%S23 + I15%(2.0%SC23*C5 +

(1.0 - 2.0%5523)*C4*S5) + I16%C2%(C23%C5 - S23*C4*S5) +

I21*SC23*CC4 + I20*((1.0 + CC4)*SC23*SS5 - (1.0 -

2.0%S523)%C4*SC5) + I22*((1.0 - 2.0%5523)*C5 -

2.0%SC23*C4*S5)) + I10%(1.0 -~ 2.0%SS23);

b114 = 2.0*(-I115%SC23%S4%S5 ~ I[16%C2%C23%54%SS + I18%C4*S5 -
I20%(SS23+SS5#SC4 -~ SC23%54%SC5) - I122#CC23%54*S5 -
I21%SS23%SC4) ;

b115 = 2.0%(I20%(SC5*(CC4*(1.0 - CC23) - CC23) - SC23%C4*(1.0 -
2.0%S55)) - I15%(SS23%S5 - SC23%C4*C5) - I16*C2%(S23#S5 -
C23%C4*C5) + 118#S4+C5 + I22%(CC23#C4*C5 - SC23%S5));

biié = 0.0;

b123 = 2.0%(-I8+S23 + I13%C23 + I15%523*#544S5 + I18%(C23%C4*S5 +
S23*CS) + I19*C23#SC4 + I20*S4*(C23%C4+CC5 - S23*SC5) +
I22#C23*54%55);

b124 = ~I18%2,0%523%S4%S5 + I19%323%(1.0 - (2.0%S54)) +
I20%S523%(1.0 -2.0%554*CC5) - I14=523;

b125 = I17*C23*S4 + I18+2.0%(S23*#C4*C5 + C23%S5) +
120%S4*(C23*(1.0 - 2.0%55S5) - S23%C4%2.0%SC5);

b113

b126 = -I23%(S23+C5 + C23%C4*S5);

b134 = b124;

b135 = b125;

b136 = bH126;

b145 = 2.0*(I15%523*%C4#C5 + I16%C2xC4*CS + 118+C23%54%C5 +

122%C23%C4#CS) + I17%S23*C4 - 120%(S23%C4*(1.0 - 2.0%SS5) +
. 2.0%C23%5CS) ; o
b146 = I23%523%54x%S5;



191

b156 = -I23%(C23%S5 + S23*C4*C5);

b212 = 0.0;

b213 = 0.0;

b214 = I14%S23 + I19%S523*(1.0 - (2.0%SS4)) + 2.0%(-I15%C23%C4*S5 +
T16%S52*C4*S5 + I20*(S23*(CC5+#CC4 - 0.5) + C23*C4*SCS5) +
I122%S523%C4*85) ;

b215 = 2.0%(-I15%C23*S4*C5 + I22%523%S4*C5 + I16%S2%S4xC5) -

. I17%C23%S4 + I20%(C23*S4*(1.0 ~ 2.0%5SS5) = 2.0%523%SC4%SCS) ;

b216 = -b126;

b223 = 2.0*(-I12%S3 + I5*C3 + I16*(C3*C5 = S3%C4*S5));

1224 = 2.0%(~I16*C3*S4*S5 + I20#SC4*SS5 + I21*SC4 - I22*S4%S5);

b225 = 2.0*(-I15%S5 + I16%(C3*C4*CS -~ S3*S5) + I20*SS4*SCS +

122*C4%CS) ;
b226 = 0.0;
b234 = b224;
b235 = b225;
b236 = 0.0;
b245 = 2.0%(-I15%54*C5 - I16%S3%x54*CS5) - I17%*S4 + I20%S4*(1.0 -
2.0%SS5);
b246 = I123%C4*S5;
b256 = I23*54*CS5;
b312 = 0.0;
b313 = 0.0;

b314 = 2.0%(-I15%C23*C4*S5 + 122%523*C4*S5 + I20*(523*(CC5*CC4 -
0.5) + C23%C4*SC5)) + I14%S23 + I19*S23*(1.0 - (2.0%*554));

b315 = 2.0%(~I15%C23%S4xC5 + I22%S23#S54*C5) - I17%C23*54 +
120%S4%(C23*(1.0 = 2.0%SS5) - 2.0%523%C4*SCS);

b316 = -b136;

b323 = 0.0;

b324 = 2.0%(I20%SC4*SS5 + I21%SC4 - I22%54%SS);

b325 = 2.0*(-I15*S5 + I20*SS4*SC5 + I22#C4%CS);

b326 = 0.0;

b334 = b324;

b335 = b325;

b336 = 0.0;

b345 = -I15%2.0%S4%CS - I17%S4 + I20%S4*(1.0 - 2.0%SS5);
b346 = b246;

b356 = b256;

b412 = -b214;

b413 = -b314;

b414 = 0.0;

b415 = -I20%(S23%C4*(1.0 - 2.0*SS5) + 2.0%C23*SC5) - I17*523*C4;
b416 = -b146;



b423
b424

b425 =
b426 =
b434 =

b435
b436
b445

b446 =
b456 =
b512 =
b513 =

b514
b515

b516 =

b523
b524
b525
b526
b534
b535
b536
bS45
b546
bSE56
b612
b613
b614
b615
b616
b623
b624
b625
b626
b634
b635
b636
b645
b646
b656

-b324;
0.0;
I17%S4 + I20%S4%(1.0 - 2.0*SS5);
-b246; .
0.0;
b425;
-b346;
-I20%2,.0%SC5;
0.0;
-I23%S5;
-b215;
-b315;
-b415;
0.0;
-b156;
-b325;
-b425;
0.0;
-b256;
b524;
0.0;
~-b356;
0.0;
~-b456;
0.0;
b126;
b136;
b146;
b156;
0.0;
0.0;
b246;
b256;
0.0;
b624;
b625;
0.0;
b456;
0.0;
0.0;



193

Centrifugal Matrix:

cil
ci2

0.0;

I4%C2 - I8*S23 - I9*S2 + I13%C23 + I15%S23%S4%S5 +

I16*C2%S4*S5 + I118%(C23*C4*S5 + S23#CS5) + I19*C23*SC4 +

T120%S54*(C23*C4*CC5 - S23*SCS) + 122xC23%54xS5;

cl13 = 0.5*b123;

cl4 = -I15%523%54%S5 - I16*C2*S4*S5 + I118+%C23*C4#55 +
120%S23*S4%SC5 - I22*C23%54%S5;

cl15 = -I15%S23*%54*S5 - I16%C2%S4*S5 + I18*(S23*C5 + C23%C4*S5) -

I22%C23%54*S5;
clé = 0.0;
c21 = -0.5*b112;
c22 = 0.0;
c23 = 0.5*%b223;
c24 = -I15%C4%*S5 - I116xS3%C4*S5 + 120%C4*SC5;
c25 = -I15%C4%S5 + I116*(C3#C5 - S3*C4*S5) + I22xCS;
c26 = 0.0;
c31 = -0.5%b113;
c32 = -c23;
c33 = 0.0;
c34 = -I15%C4%xS5 + I120%C4*SC5;
¢35 = -I15%C4%S5 + I22xCS5;
c36 = 0.0;
c4l1 = -0.5*b114;
c42 = -0.5xb224;
c43 = 0.5*b423;
c44 = 0.0;
c45 = 0.0;
c46 = 0.0;
c51 = -0.5*b115;
c52 = -0.5»b225;
¢53 = 0.5*b523;
c54 = -0.5%b445;
c55 = 0.0;
c56 = 0.0;
c6l = 0.0;
c62 = 0.0;
c63 = 0.0;
c64 = 0.0;
c65 = 0.0;
c66 = 0.0;



Gravity Terms:

ggl = 0.0;

gg2 = gl*C2 + g2%523 + g3%52 + g4*C23 + g5%(523*C5 + C23%C4*S5);
gg3 = g2+523 + g4xC23 + g5+(S23%C5 + C23*C4xS5) ;

gg4 = -g5%523%54x%S55;

gg5S = g5*(C23%S5 + S§23%*C4*CS5) ;

ggé = 0.0;

194



